Skip to main content
Log in

Carbon dots as a sustainable nanoplatform

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Carbon dots (CDs), a new member of the nanocarbon family, are revolutionizing a wide range of fields. This new member has been the subject of extensive international research. Its synthesis methods, characteristics, and applications are active research areas. Carbon dots are nanoparticles composed of carbon with a diameter of less than 10 nm. The distinctive structure and size of CDs suggest that their physical, chemical, electrical, and optical properties are modifiable. In addition, they possess properties such as low toxicity, high water solubility, chemical stability, photoluminescence, photostability, electroluminescence, high quantum yield, high surface area, heteroatom doping capability, abundance of surface functional groups, good conductivity, and environmental friendliness. This review attempts to provide an introductory story of carbon dots. From the early beginning of CDs through the myriad of synthesis techniques used to date, the review advances to the properties and applications that have not yet been fully explored. The principal applications covered include fluorescence detection, electrochemical sensing, pH monitoring, fluorescent ink, and metal nanoparticle synthesis. Recent developments, gaps, and obstacles for each of these applications have been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This declaration is not applicable.

References

  1. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  Google Scholar 

  2. Lin F, Jia C, Wu FG (2022) Carbon dots for intracellular sensing. Small Struct 3(9):2200033

    Article  Google Scholar 

  3. Gao G, Jiang YW, Jia HR, Yang J, Wu FG (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    Article  Google Scholar 

  4. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    Article  Google Scholar 

  5. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    Article  Google Scholar 

  6. Hu C, Xiao Y, Zou Y, Dai L (2018) Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem Energy Rev 1(1):84–112

    Article  Google Scholar 

  7. Gao J, Zhu M, Huang H, Liu Y, Kang Z (2017) Advances, challenges and promises of carbon dots. Inorg Chem Front 4(12):1963–1986

    Article  Google Scholar 

  8. Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W (2011) Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon. 49(9):3134–3140

    Article  Google Scholar 

  9. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  10. Tuerhong M, Yang XU, Xue-Bo YI (2017) Review on carbon dots and their applications. Chinese J Anal Chem 45(1):139–150

    Article  Google Scholar 

  11. Bogireddy NK, Rios SE, Agarwal V (2021) Simple one step synthesis of dual-emissive heteroatom doped carbon dots for acetone sensing in commercial products and Cr (VI) reduction. Chem Eng J 414:128830

    Article  Google Scholar 

  12. Long C, Jiang Z, Shangguan J, Qing T, Zhang P, Feng B (2021) Applications of carbon dots in environmental pollution control: a review. Chem Eng J 406:126848

    Article  Google Scholar 

  13. Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem–A Eur J 18(39):12522–12528

    Article  Google Scholar 

  14. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2):281–290

    Article  Google Scholar 

  15. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849

    Article  Google Scholar 

  16. Chauhan DS, Quraishi MA, Verma C (2022) Carbon nanodots: recent advances in synthesis and applications. Carbon Lett:1–27

  17. Fan T, Zeng W, Tang W, Yuan C, Tong S, Cai K, Liu Y, Huang W, Min Y, Epstein AJ (2015) Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res Lett 10(1):1–8

    Article  Google Scholar 

  18. Bardhan S, Roy S, Das S (2022) Carbon dots: fundamental concepts and biomedical applications. In: Gopi S, Balakrishnan P, Mubarak NM (eds) Nanotechnology for biomedical applications. Materials horizons: from nature to nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7483-9_5

    Chapter  Google Scholar 

  19. Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM (2012) One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22(18):8764–8766

    Article  Google Scholar 

  20. So RC, Sanggo JE, Jin L, Diaz JM, Guerrero RA, He J (2017) Gram-scale synthesis and kinetic study of bright carbon dots from citric acid and Citrus japonica via a microwave-assisted method. ACS Omega 2(8):5196–5208

    Article  Google Scholar 

  21. Young Park S, Uk Lee H, Lee YC, Choi S, Hyun Cho D, Sik Kim H, Bang S, Seo S, Chang Lee S, Won J, Son BC (2015) Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems. Sci Rep 5(1):1–8

    Article  Google Scholar 

  22. Kishore SC, Atchudan R, Jebakumar Immanuel Edison TN, Perumal S, Alagan M, Vinodh R, Shanmugam M, Lee YR (2020) Solid waste-derived carbon fibers-trapped nickel oxide composite electrode for energy storage application. Energy Fuels 34(11):14958–14967

    Article  Google Scholar 

  23. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, Qi B, Pang DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23(48):5801–5806

    Article  Google Scholar 

  24. Kang S, Han H, Lee K, Kim KM (2022) Ultrasensitive detection of Fe3+ Ions using functionalized graphene quantum dots fabricated by a one-step pulsed laser ablation process. ACS Omega 7(2):2074–2081

    Article  Google Scholar 

  25. Suda Y, Ono T, Akazawa M, Sakai Y, Tsujino J, Homma N (2002) Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method-size and binding energy dependence on ambient gas pressure and plasma condition. Thin Solid Films 415(1-2):15–20

    Article  Google Scholar 

  26. Doñate-Buendia C, Torres-Mendieta R, Pyatenko A, Falomir E, Fernández-Alonso M, Mínguez-Vega G (2018) Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega 3(3):2735–2742

    Article  Google Scholar 

  27. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    Article  Google Scholar 

  28. Chen ZW, Hsieh TH, Liu CP (2022) Production of carbon dots by pulsed laser ablation: precursors and photo-oxidase properties. J Chinese Chem Soc 69(1):193–199

    Article  Google Scholar 

  29. Therese GH, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12(5):1195–1204

    Article  Google Scholar 

  30. Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131(13):4564–4565

    Article  Google Scholar 

  31. Cloutier M, Harnagea C, Hale P, Seddiki O, Rosei F, Mantovani D (2014) Long-term stability of hydrogenated DLC coatings: effects of aging on the structural, chemical and mechanical properties. Diam Relat Mater 48:65–72

    Article  Google Scholar 

  32. Yatom S, Bak J, Khrabryi A, Raitses Y (2017) Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. Carbon 117:154–162

    Article  Google Scholar 

  33. Wang X, Feng Y, Dong P, Huang J (2019) A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front Chem 7:671

    Article  Google Scholar 

  34. Wang F, Wang S, Sun Z, Zhu H (2015) Study on ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fluorescent quantum dots. Fuller Nanotub Carbon Nanostructures 23(9):769–776

    Article  Google Scholar 

  35. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C 6(30):7944–7970

    Article  Google Scholar 

  36. Shen L, Zhang L, Chen M, Chen X, Wang J (2013) The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 55:343–349

    Article  Google Scholar 

  37. Nguyen V, Yan L, Si J, Hou X (2016) Femtosecond laser-assisted synthesis of highly photoluminescent carbon nanodots for Fe3+ detection with high sensitivity and selectivity. Opt Mater Express 6(2):312–320

    Article  Google Scholar 

  38. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48(64):7955–7957

    Article  Google Scholar 

  39. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382

    Article  Google Scholar 

  40. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48(75):9367–9369

    Article  Google Scholar 

  41. Singh RK, Kumar R, Singh DP, Savu R, Moshkalev SA (2019) Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater Today Chem 12:282–314

    Article  Google Scholar 

  42. Wu CC, Shiau CY, Ayele DW, Su WN, Cheng MY, Chiu CY, Hwang BJ (2010) Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation. Chem Mater 22(14):4185–4190

    Article  Google Scholar 

  43. Laddha H, Yadav P, Jain Y, Sharma M, Reza M, Agarwal M, Gupta R (2022) One-pot microwave-assisted synthesis of blue emissive multifunctional NSP co-doped carbon dots as a nanoprobe for sequential detection of Cr (VI) and ascorbic acid in real samples, fluorescent ink and logic gate operation. J Mol Liq 346:117088

    Article  Google Scholar 

  44. Wang B, Lu S (2022) The light of carbon dots: From mechanism to applications. Matter 5(1):110–149

    Article  Google Scholar 

  45. Sivasankarapillai VS, Kirthi AV, Akksadha M, Indu S, Dharshini UD, Pushpamalar J, Karthik L (2020) Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology. Nanoscale Adv 2(5):1760–1773

    Article  Google Scholar 

  46. Sharma A, Das J (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 17(1):1–24

    Article  Google Scholar 

  47. Xie Y, Kocaefe D, Chen C, Kocaefe Y (2016) Review of research on template methods in preparation of nanomaterials. J Nanomater 2016

  48. Yang Y, Wu D, Han S, Hu P, Liu R (2013) Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem Commun 49(43):4920–4922

    Article  Google Scholar 

  49. Zhu Z, Cheng R, Ling L, Li Q, Chen S (2020) Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method. Angewandte Chem Int Ed 59(8):3099–3105

    Article  Google Scholar 

  50. Abd Rani U, Ng LY, Ng CY, Mahmoudi E (2020) A review of carbon quantum dots and their applications in wastewater treatment. Adv Colloid Interface Sci 278:102124

    Article  Google Scholar 

  51. Yao B, Huang H, Liu Y, Kang Z (2019) Carbon dots: a small conundrum. Trends Chem 1(2):235–246

    Article  Google Scholar 

  52. Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30

    Article  Google Scholar 

  53. Zuo J, Jiang T, Zhao X, Xiong X, Xiao S, Zhu Z (2015) Preparation and application of fluorescent carbon dots. J Nanomater 2015

  54. Farshbaf M, Davaran S, Rahimi F, Annabi N, Salehi R, Akbarzadeh A (2018) Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artif Cells Nanomed Biotechnol 46(7):1331–1348

    Article  Google Scholar 

  55. Wu X, Yu F, Han Y, Jiang L, Li Z, Zhu J, Xu Q, Tedesco AC, Zhang J, Bi H (2023) Enhanced chemodynamic and photoluminescence efficiencies of Fe-O4 coordinated carbon dots via the core–shell synergistic effect. Nanoscale 15(1):376–386

    Article  Google Scholar 

  56. Jiang L, Cai H, Zhou W, Li Z, Zhang L, Bi H (2023) RNA-targeting carbon dots for live-cell imaging of granule dynamics. Advanced Mater 35:2210776

    Article  Google Scholar 

  57. Ðorđević L, Arcudi F, Cacioppo M, Prato M (2022) A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnol 17(2):112–130

    Article  Google Scholar 

  58. Mintz KJ, Zhou Y, Leblanc RM (2019) Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11(11):4634–4652

    Article  Google Scholar 

  59. Desmond LJ, Phan AN, Gentile P (2021) Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environ Sci: Nano 8(4):848–862

    Google Scholar 

  60. Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, Zheng J, Huang N, Gu Y, Wang C, Shu C (2013) Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale 5(3):1137–1142

    Article  Google Scholar 

  61. Li X, Lau SP, Tang L, Ji R, Yang P (2014) Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale 6(10):5323–5328

    Article  Google Scholar 

  62. Adedokun O, Roy A, Awodugba AO, Devi PS (2017) Fluorescent carbon nanoparticles from Citrus sinensis as efficient sorbents for pollutant dyes. Luminescence 32(1):62–70

    Article  Google Scholar 

  63. Manikandan V, Lee NY (2022) Green synthesis of carbon quantum dots and their environmental applications. Environ Res 212:113283

    Article  Google Scholar 

  64. Lin Z, Xue W, Chen H, Lin JM (2012) Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem Commun 48(7):1051–1053

    Article  Google Scholar 

  65. Tan A, Yang G, Wan X (2021) Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting. Spectrochim Acta Part A: Mol Biomol Spectrosc 253:119583

    Article  Google Scholar 

  66. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nature Chem 2(12):1015–1024

    Article  Google Scholar 

  67. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22(14):2971–2979

    Article  Google Scholar 

  68. Zeng YW, Ma DK, Wang W, Chen JJ, Zhou L, Zheng YZ, Yu K, Huang SM (2015) N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids. Appl Surf Sci 342:136–143

    Article  Google Scholar 

  69. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188

    Article  Google Scholar 

  70. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, Liu J, Chen P (2019) Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater 31(21):1808283

    Article  Google Scholar 

  71. Zhao P, Zhu L (2018) Dispersibility of carbon dots in aqueous and/or organic solvents. Chem Commun 54(43):5401–5406

    Article  Google Scholar 

  72. Sun Y, Zhang M, Bhandari B, Yang C (2022) Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Rev Int 38(7):1513–1532

    Article  Google Scholar 

  73. Korah BK, Mathew B (2022) Sustainable carbon quantum dots from Vitex negundo leaves as a synergistic nanoplatform for triple object sensing and anticounterfeiting applications. Mater Today Sustain 21:100273

    Article  Google Scholar 

  74. Lin Z, Xue W, Chen H, Lin JM (2011) Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83(21):8245–8251

    Article  Google Scholar 

  75. Yuan Y, Zhao X, Qiao M, Zhu J, Liu S, Yang J, Hu X (2016) Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots. Spectrochim Acta Part A: Mol Biomol Spectrosc 167:106–110

    Article  Google Scholar 

  76. Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63(30):6707–6714

    Article  Google Scholar 

  77. Sun Q, He J, Yang H, Li S, Zhao L, Li H (2017) Analysis of binding properties and interaction of thiabendazole and its metabolite with human serum albumin via multiple spectroscopic methods. Food Chem 233:190–196

    Article  Google Scholar 

  78. Esmaeili S, Ashrafi-Kooshk MR, Khaledian K, Adibi H, Rouhani S, Khodarahmi R (2016) Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: a basic in vitro study on the food safety of the colorant in terms of enzyme inhibition. Food Chem 213:494–504

    Article  Google Scholar 

  79. Al-Shabib NA, Khan JM, Ali MS, Al-Lohedan HA, Khan MS, Al-Senaidy AM, Husain FM, Shamsi MB (2017) Exploring the mode of binding between food additive “butylated hydroxytoluene (BHT)” and human serum albumin: spectroscopic as well as molecular docking study. J Mol Liq 230:557–564

    Article  Google Scholar 

  80. Chen Q, Zuo J, He X, Mo X, Tong P, Zhang L (2017) Enhanced fluorescence of terbium with thiabendazole and application in determining trace amounts of terbium and thiabendazole. Talanta 162:540–546

    Article  Google Scholar 

  81. Martins FC, Sentanin MA, De Souza D (2019) Analytical methods in food additives determination: compounds with functional applications. Food Chem 272:732–750

    Article  Google Scholar 

  82. Anmei S, Qingmei Z, Yuye C, Yilin W (2018) Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal Chim Acta 1023:115–120

    Article  Google Scholar 

  83. Li Q, Song P, Wen J (2019) Melamine and food safety: a 10-year review. Curr Opin Food Sci 30:79–84

    Article  Google Scholar 

  84. Hu X, Shi J, Shi Y, Zou X, Arslan M, Zhang W, Huang X, Li Z, Xu Y (2019) Use of a smartphone for visual detection of melamine in milk based on Au@ carbon quantum dots nanocomposites. Food Chem 272:58–65

    Article  Google Scholar 

  85. Cui C, Lei J, Yang L, Shen B, Wang L, Zhang J (2018) Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6G. Res Chem Intermed 44(8):4633–4640

    Article  Google Scholar 

  86. Yang X, Xu J, Luo N, Tang F, Zhang M, Zhao B (2020) N, Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chem 310:125832

    Article  Google Scholar 

  87. Yao D, Li C, Wen G, Liang A, Jiang Z (2020) A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification. Talanta 209:120529

    Article  Google Scholar 

  88. Yang P, Zhu Z, Chen M, Zhou X, Chen W (2019) Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid. Spectrochim Acta Part A: Mol Biomol Spectrosc 213:301–308

    Article  Google Scholar 

  89. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110(5):2709–2728

    Article  Google Scholar 

  90. Kurkdjian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Ann Rev Plant Biol 40(1):271–303

    Article  Google Scholar 

  91. Zhu H, Fan J, Xu Q, Li H, Wang J, Gao P, Peng X (2012) Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun 48(96):11766–11768

    Article  Google Scholar 

  92. Schutting S, Borisov SM, Klimant I (2013) Diketo-pyrrolo-pyrrole dyes as new colorimetric and fluorescent pH indicators for optical carbon dioxide sensors. Anal Chem 85(6):3271–3279

    Article  Google Scholar 

  93. Burgstaller S, Bischof H, Gensch T, Stryeck S, Gottschalk B, Ramadani-Muja J, Eroglu E, Rost R, Balfanz S, Baumann A, Waldeck-Weiermair M (2019) pH-Lemon, a fluorescent protein-based pH reporter for acidic compartments. ACS Sens 4(4):883–891

    Article  Google Scholar 

  94. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195

    Article  Google Scholar 

  95. Shen Y, Rosendale M, Campbell RE, Perrais D (2014) pHuji, a pH-sensitive red fluorescent protein for imaging of exo-and endocytosis. J Cell Biol 207(3):419–432

    Article  Google Scholar 

  96. Esposito A, Gralle M, Dani MA, Lange D, Wouters FS (2008) pH lameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry 47(49):13115–13126

    Article  Google Scholar 

  97. Kremers GJ, Goedhart J, van Munster EB, Gadella TW (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45(21):6570–6580

    Article  Google Scholar 

  98. Shangguan J, He D, He X, Wang K, Xu F, Liu J, Tang J, Yang X, Huang J (2016) Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal Chem 88(15):7837–7843

    Article  Google Scholar 

  99. Du F, Ming Y, Zeng F, Yu C, Wu S (2013) A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology 24(36):365101

    Article  Google Scholar 

  100. Wang H, Di J, Sun Y, Fu J, Wei Z, Matsui H, Del C, Alonso A, Zhou S (2015) Biocompatible PEG-chitosan@ carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv Funct Mater 25(34):5537–5547

    Article  Google Scholar 

  101. Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y (2012) Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24(43):5844–5848

    Article  Google Scholar 

  102. Shi W, Li X, Ma H (2012) A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angewandte Chem Int Ed 51(26):6432–6435

    Article  Google Scholar 

  103. Hu X, Zhang X, Cao H, Huang Y (2022) Cu-based metal-organic frameworks-derived copper nanoclusters with tunable emission for ratiometric pH sensing. Sens Actuat B: Chem 353:131130

    Article  Google Scholar 

  104. Kalaiyarasan G, Joseph J (2017) Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped carbon quantum dots. Microchim Acta 184(10):3883–3891

    Article  Google Scholar 

  105. Wang X, Feng Y, Liu J, Cheng K, Liu Y, Yang W, Zhang H, Peng H (2022) Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations. Spectrochim Acta Part A: Mol Biomol Spectrosc 267:120477

    Article  Google Scholar 

  106. Ehtesabi H, Bagheri Z, Yaghoubi-Avini M (2019) Application of three-dimensional graphene hydrogels for removal of ofloxacin from aqueous solutions. Environ Nanotechnol Monit Manag 12:100274

    Google Scholar 

  107. Ehtesabi H, Bagheri Z, Eskandari F, Ahadian MM (2018) Molecular interaction between three-dimensional graphene aerogel and enzyme solution: effect on enzyme structure and function. J Mol Liq 265:565–571

    Article  Google Scholar 

  108. Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186(4):1–20

    Article  Google Scholar 

  109. Ehtesabi H, Roshani S, Bagheri Z, Yaghoubi-Avini M (2019) Carbon dots—sodium alginate hydrogel: a novel tetracycline fluorescent sensor and adsorber. J Environ Chem Eng 7(5):103419

    Article  Google Scholar 

  110. Liu Y, Zhou Q (2017) Sensitive pH probe developed with water-soluble fluorescent carbon dots from chocolate by one-step hydrothermal method. Int J Environ Anal Chem 97(12):1119–1131

    Article  Google Scholar 

  111. Teng X, Ma C, Ge C, Yan M, Yang J, Zhang Y, Morais PC, Bi H (2014) Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe3+ and L-lysine for bioimaging. J Mater Chem B 2(29):4631–4639

    Article  Google Scholar 

  112. Sarkar N, Sahoo G, Das R, Prusty G, Swain SK (2017) Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. Eur J Pharm Sci 109:359–371

    Article  Google Scholar 

  113. Dutta Choudhury S, Chethodil JM, Gharat PM, PK P, Pal H (2017) pH-elicited luminescence functionalities of carbon dots: mechanistic insights. J Phys Chem Lett 8(7):1389–1395

    Article  Google Scholar 

  114. Sawant VJ, Bamane SR, Kanase DG, Patil SB, Ghosh J (2016) Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Adv 6(71):66745–66755

    Article  Google Scholar 

  115. Shi L, Li Y, Li X, Zhao B, Wen X, Zhang G, Dong C, Shuang S (2016) Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells. Biosens Bioelectron 77:598–602

    Article  Google Scholar 

  116. Fan Z, Zhou S, Garcia C, Fan L, Zhou J (2017) pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 9(15):4928–4933

    Article  Google Scholar 

  117. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178

    Article  Google Scholar 

  118. Safavi A, Ahmadi R, Mohammadpour Z, Zhou J (2016) Fluorescent pH nanosensor based on carbon nanodots for monitoring minor intracellular pH changes. RSC Adv 6(106):104657–104664

    Article  Google Scholar 

  119. He C, Xu P, Zhang X, Long W (2022) The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: current state and future perspective. Carbon 186:91–127

    Article  Google Scholar 

  120. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4(7):1732–1748

    Article  Google Scholar 

  121. Qu S, Chen H, Zheng X, Cao J, Liu X (2013) Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale 5(12):5514–5518

    Article  Google Scholar 

  122. Doroodmand MM, Askari M (2017) Synthesis of a novel nitrogen-doped carbon dot by microwave-assisted carbonization method and its applications as selective probes for optical pH (acidity) sensing in aqueous/nonaqueous media, determination of nitrate/nitrite, and optical recognition of nox gas. Anal Chim Acta 968:74–84

    Article  Google Scholar 

  123. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5(45):8904–8924

    Article  Google Scholar 

  124. Wang Q, Yang H, Zhang Q, Ge H, Zhang S, Wang Z, Ji X (2019) Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Microchim Acta 186(7):1–9

    Article  Google Scholar 

  125. Hao Y, Gan Z, Zhu X, Li T, Wu X, Chu PK (2015) Emission from trions in carbon quantum dots. J Phys Chem C 119(6):2956–2962

    Article  Google Scholar 

  126. Lesani P, Singh G, Lu Z, Mirkhalaf M, New EJ, Zreiqat H (2022) Two-photon ratiometric carbon dot-based probe for real-time intracellular pH monitoring in 3D environment. Chem Eng J 433:133668

    Article  Google Scholar 

  127. Yang Y, Wang C, Shu Q, Xu N, Qi S, Zhuo S, Zhu C, Du J (2022) Facile one-step fabrication of Cu-doped carbon dots as a dual-selective biosensor for detection of pyrophosphate ions and measurement of pH. Spectrochim Acta Part A: Mol Biomol Spectrosc 268:120681

    Article  Google Scholar 

  128. Zheng C, An X, Gong J (2015) Novel pH sensitive N-doped carbon dots with both long fluorescence lifetime and high quantum yield. RSC Adv 5(41):32319–32322

    Article  Google Scholar 

  129. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem–A Eur J 20(8):2254–2263

    Article  Google Scholar 

  130. He Y, Li Z, Jia Q, Shi B, Zhang H, Wei L, Yu M (2017) Ratiometric fluorescent detection of acidic pH in lysosome with carbon nanodots. Chinese Chem Lett 28(10):1969–1974

    Article  Google Scholar 

  131. Xu H, Yan L, Nguyen V, Yu Y, Xu Y (2017) One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method. Appl Surf Sci 414:238–243

    Article  Google Scholar 

  132. Mao Y, Bao Y, Yan L, Li G, Li F, Han D, Zhang X, Niu L (2013) pH-switched luminescence and sensing properties of a carbon dot–polyaniline composite. RSC Adv 3(16):5475–5482

    Article  Google Scholar 

  133. Barati A, Shamsipur M, Abdollahi H (2016) Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH. Anal Chim Acta 931:25–33

    Article  Google Scholar 

  134. Sun Y, Wang X, Wang C, Tong D, Wu Q, Jiang K, Jiang Y, Wang C, Yang M (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185(1):1–8

    Article  Google Scholar 

  135. Zhang C, Cui Y, Song L, Liu X, Hu Z (2016) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150:54–60

    Article  Google Scholar 

  136. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7(27):11727–11733

    Article  Google Scholar 

  137. Liu W, Li C, Sun X, Pan W, Wang J (2017) Carbon-dot-based ratiometric fluorescent pH sensor for the detections of very weak acids assisted by auxiliary reagents that contribute to the release of protons. Sens Actuat B: Chem 244:441–449

    Article  Google Scholar 

  138. Durodola SS, Adekunle AS, Olasunkanmi LO, Oyekunle JA, Ore OT, Oluwafemi SO (2022) A review on graphene quantum dots for electrochemical detection of emerging pollutants. J Fluoresc:1–4

  139. Sivaranjanee R, Kumar PS, Saravanan R, Govarthanan M (2022) Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: a review. Chemosphere 294:133779

    Article  Google Scholar 

  140. Korah BK, John N, John BK, Mathew S, Bijimol D, Mathew B (2022) Carbon dots as a fluorescent ink and dual-mode probe for the efficient detection of doxycycline and Hg (II) ions. J Mater Res 37(18):3060–3070

    Article  Google Scholar 

  141. Korah BK, Murali A, Chacko AR, Thara CR, Mathew J, George B, Mathew B (2022) Bio-inspired novel carbon dots as fluorescence and electrochemical-based sensors and fluorescent ink. Biomass Convers Bioref 1–4. https://doi.org/10.1007/s13399-022-03294-3

  142. Korah BK, Thara CR, John N, John BK, Mathew S, Mathew B (2023) Microwave abetted synthesis of carbon dots and its triple mode applications in tartrazine detection, manganese ion sensing and fluorescent ink. Food Control. 147:109608

    Article  Google Scholar 

  143. Liu L, Anwar S, Ding H, Xu M, Yin Q, Xiao Y, Yang X, Yan M, Bi H (2019) Electrochemical sensor based on F, N-doped carbon dots decorated laccase for detection of catechol. Journal of Electroanalytical Chemistry. 840:84–92

    Article  Google Scholar 

  144. Nguyen HV, Richtera L, Moulick A, Xhaxhiu K, Kudr J, Cernei N, Polanska H, Heger Z, Masarik M, Kopel P, Stiborova M (2016) Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode. Analyst 141(9):2665–2675

    Article  Google Scholar 

  145. Li L, Liu D, Shi A, You T (2018) Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid. Sens Actuat B: Chem 255:1762–1770

    Article  Google Scholar 

  146. Tan SC, Chin SF, Pang SC (2017) Disposable carbon dots modified screen printed carbon electrode electrochemical sensor strip for selective detection of ferric ions. J Sens 2017

  147. Guo H, Jin H, Gui R, Wang Z, Xia J, Zhang F (2017) Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin. Sens Actuat B: Chem 253:50–57

    Article  Google Scholar 

  148. Canevari TD, Cincotto FH, Nakamura M, Machado SA, Toma HE (2016) Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Anal Methods 8(39):7254–7259

    Article  Google Scholar 

  149. Algarra M, González-Calabuig A, Radotić K, Mutavdzic D, Ania CO, Lázaro-Martínez JM, Jimenez-Jimenez J, Rodríguez-Castellón E, Del Valle M (2018) Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta 178:679–685

    Article  Google Scholar 

  150. Chen J, He P, Bai H, He S, Zhang T, Zhang X, Dong F (2017) Poly (β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sens Actuat B: Chem 252:9–16

    Article  Google Scholar 

  151. Jiang Y, Wang B, Meng F, Cheng Y, Zhu C (2015) Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical dopamine detection. J Colloid Interface Sci 452:199–202

    Article  Google Scholar 

  152. Muthusankar G, Sasikumar R, Chen SM, Gopu G, Sengottuvelan N, Rwei SP (2018) Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries. J Colloid Interface Sci 523:191–200

    Article  Google Scholar 

  153. Su Y, Zhou X, Long Y, Li W (2018) Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim Acta 185(2):1–8

    Article  Google Scholar 

  154. Guo H, Gui R, Jin H, Wang Z (2017) Facile construction of reduced graphene oxide–carbon dot complex embedded molecularly imprinted polymers for dual-amplification and selective electrochemical sensing of rutoside. N J Chem 41(18):9977–9983

    Article  Google Scholar 

  155. Shiri S, Pajouheshpoor N, Khoshsafar H, Amidi S, Bagheri H (2017) An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@ CuFe2O4 nanocomposite modified carbon paste electrode. N J Chem 41(24):15564–15573

    Article  Google Scholar 

  156. Wang L, Chen X, Liu C, Yang W (2016) Non-enzymatic acetylcholine electrochemical biosensor based on flower-like NiAl layered double hydroxides decorated with carbon dots. Sens Actuat B: Chem 233:199–205

    Article  Google Scholar 

  157. Hu G, Kang J, Ng LW, Zhu X, Howe RC, Jones CG, Hersam MC, Hasan T (2018) Functional inks and printing of two-dimensional materials. Chem Soc Rev 47(9):3265–3300

    Article  Google Scholar 

  158. Atchudan R, Edison TN, Aseer KR, Perumal S, Karthik N, Lee YR (2018) Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens Bioelectron 99:303–311

    Article  Google Scholar 

  159. Atchudan R, Edison TN, Aseer KR, Perumal S, Lee YR (2018) Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink. Colloids Surf B: Biointerfaces 169:321–328

    Article  Google Scholar 

  160. Atchudan R, Edison TN, Perumal S, Muthuchamy N, Lee YR (2020) Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel 275:117821

    Article  Google Scholar 

  161. Guo X, Zhu Y, Zhou L, Zhang L, You Y, Zhang H, Hao J (2018) A facile and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Adv 8(66):38091–38099

    Article  Google Scholar 

  162. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte Chem Int Ed 51(49):12215–12218

    Article  Google Scholar 

  163. Khan WU, Wang D, Zhang W, Tang Z, Ma X, Ding X, Du S, Wang Y (2017) High quantum yield green-emitting carbon dots for Fe (ІІІ) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 7(1):1–9

    Article  Google Scholar 

  164. Nuryadin BW, Nurjanah R, Mahen EC, Nuryantini AY (2017) Synthesis and characterization of carbon nanoparticle/PVA/chitosan for security ink applications. Mater Res Express 4(3):034003

    Article  Google Scholar 

  165. Song Z, Lin T, Lin L, Lin S, Fu F, Wang X, Guo L (2016) Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angewandte Chem 128(8):2823–2827

    Article  Google Scholar 

  166. Wang Y, Wang J, Ma P, Yao H, Zhang L, Li Z (2017) Synthesis of fluorescent polymeric carbon nitride quantum dots in molten salts for security inks. N J Chem 41(24):14918–14923

    Article  Google Scholar 

  167. Mondal TK, Saha SK (2019) Facile approach to synthesize nitrogen-and oxygen-rich carbon quantum dots for pH sensor, fluorescent indicator, and invisible ink applications. ACS Sustain Chem Eng 7(24):19669–19678

    Article  Google Scholar 

  168. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428

    Article  Google Scholar 

  169. Wei W, Xu C, Wu L, Wang J, Ren J, Qu X (2014) Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci Rep 4(1):1–7

    Google Scholar 

  170. Zhou X, Zhao G, Tan X, Qian X, Zhang T, Gui J, Yang L, Xie X (2019) Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim Acta 186(2):1–9

    Article  Google Scholar 

  171. Li C, Sun X, Li Y, Liu H, Long B, Xie D, Chen J, Wang K (2021) Rapid and green fabrication of carbon dots for cellular imaging and anti-counterfeiting applications. ACS Omega 6(4):3232–3237

    Article  Google Scholar 

  172. Liu Y, Zhou L, Li Y, Deng R, Zhang H (2017) Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale 9(2):491–496

    Article  Google Scholar 

  173. Atchudan R (2018) Jebakumar Immanuel Edison TN, Perumal S, Lee YR. Indian gooseberry-derived tunable fluorescent carbon dots as a promise for in vitro/in vivo multicolor bioimaging and fluorescent ink. ACS Omega 3(12):17590–17601

    Article  Google Scholar 

  174. Atchudan R, Edison TN, Perumal S, Vinodh R, Lee YR (2019) Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. J Mol Liq 296:111817

    Article  Google Scholar 

  175. Zhang Y, He J (2015) Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Phys Chem Chem Phys 17(31):20154–20159

    Article  Google Scholar 

  176. Yang H, Liu Y, Guo Z, Lei B, Zhuang J, Zhang X, Liu Z, Hu C (2019) Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Commun 10(1):1–1

    Google Scholar 

  177. Jin K, Zhang J, Tian W, Ji X, Yu J, Zhang J (2020) Facile access to solid-state carbon dots with high luminescence efficiency and excellent formability via cellulose derivative coatings. ACS Sustain Chem Eng 8(15):5937–5945

    Article  Google Scholar 

  178. Feng W, Long P, Feng Y, Li Y (2016) Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv Sci 3(7):1500413

    Article  Google Scholar 

  179. Tan H, Gong G, Xie S, Song Y, Zhang C, Li N, Zhang D, Xu L, Xu J, Zheng J (2019) Upconversion nanoparticles@ carbon Dots@ Meso-SiO2 sandwiched core–shell nanohybrids with tunable dual-mode luminescence for 3D anti-counterfeiting barcodes. Langmuir 35(35):11503–11511

    Article  Google Scholar 

  180. Bhati A, Anand SR, Saini D, Khare P, Dubey P, Sonkar SK (2018) Self-doped nontoxic red-emitting Mg–N-embedded carbon dots for imaging, Cu(II) sensing and fluorescent ink. N J Chem 42(24):19548–19556

    Article  Google Scholar 

  181. Ma H, Sun C, Xue G, Wu G, Zhang X, Han X, Qi X, Lv X, Sun H, Zhang J (2019) Facile synthesis of fluorescent carbon dots from Prunus cerasifera fruits for fluorescent ink, Fe3+ ion detection and cell imaging. Spectrochim Acta Part A: Mol Biomol Spectrosc 213:281–287

    Article  Google Scholar 

  182. Bu L, Luo T, Peng H, Li L, Long D, Peng J, Huang J (2019) One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy. Microchim Acta 186(10):1–2

    Article  Google Scholar 

  183. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chem Int Ed 51(37):9297–9301

    Article  Google Scholar 

  184. Wang J, Peng F, Lu Y, Zhong Y, Wang S, Xu M, Ji X, Su Y, Liao L, He Y (2015) Large-scale green synthesis of fluorescent carbon nanodots and their use in optics applications. Adv Opt Mater 3(1):103–111

    Article  Google Scholar 

  185. Yang L, Liu S, Quan T, Tao Y, Tian M, Wang L, Wang J, Wang D, Gao D (2022) Sulfuric-acid-mediated synthesis strategy for multi-colour aggregation-induced emission fluorescent carbon dots: Application in anti-counterfeiting, information encryption, and rapid cytoplasmic imaging. J Colloid Interface Sci 612:650–663

    Article  Google Scholar 

  186. Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B (2020) Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 33:100879

    Article  Google Scholar 

  187. Zhao J, Li F, Zhang S, An Y, Sun S (2019) Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. N J Chem 43(16):6332–6342

    Article  Google Scholar 

  188. Messina F, Sciortino L, Popescu R, Venezia AM, Sciortino A, Buscarino G, Agnello S, Schneider R, Gerthsen D, Cannas M, Gelardi FM (2016) Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4 nanocrystalline structure. J Mater Chem C 4(13):2598–2605

    Article  Google Scholar 

  189. Xu M, Dong C, Xu J, Ur Rehman S, Wang Q, Osipov VY, Jiang K, Wang J, Bi H (2022) Fluorinated carbon dots/carboxyl methyl cellulose sodium composite with a temperature-sensitive fluorescence/phosphorescence applicable for anti-counterfeiting marking. Carbon 189:459–466

    Article  Google Scholar 

  190. Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D (2018) Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim Acta Part A: Mol Biomol Spectrosc 203:481–493

    Article  Google Scholar 

  191. Ramanarayanan R, Swaminathan S (2020) Synthesis and characterisation of green luminescent carbon dots from guava leaf extract. Mater Today: Proc 33:2223–2227

    Article  Google Scholar 

  192. Wang C, Shi H, Yang M, Yan Y, Liu E, Ji Z, Fan J (2020) Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater Res Bull 124:110730

    Article  Google Scholar 

  193. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140(12):4260–4269

    Article  Google Scholar 

  194. Luo P, Li C, Shi G (2012) Synthesis of gold@ carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys Chem Chem Phys 14(20):7360–7366

    Article  Google Scholar 

  195. Shen L, Chen M, Hu L, Chen X, Wang J (2013) Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 29(52):16135–16140

    Article  Google Scholar 

  196. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y, Yao S (2015) Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chem Commun 51(33):7164–7167

    Article  Google Scholar 

  197. Su Y, Shi B, Liao S, Zhao J, Chen L, Zhao S (2016) Silver nanoparticles/N-doped carbon-dots nanocomposites derived from Siraitia grosvenorii and its logic gate and surface-enhanced raman scattering characteristics. ACS Sustain Chem Eng 4(3):1728–1735

    Article  Google Scholar 

  198. Dong Y, Wang Q, Wan L, You X, Chi Y (2016) Carbon based dot capped silver nanoparticles for efficient surface-enhanced Raman scattering. J Mater Chem C 4(31):7472–7477

    Article  Google Scholar 

  199. Ghosh S, Satapathy SS, Ghosh K, Jauhari S, Panda SK, Si S (2019) Carbon dots assisted synthesis of gold nanoparticles and their catalytic activity in 4-nitrophenol reduction. Chem Select 4(12):3416–3422

    Google Scholar 

  200. Ma JL, Yin BC, Wu X, Ye BC (2017) Simple and cost-effective glucose detection based on carbon nanodots supported on silver nanoparticles. Anal Chem 89(2):1323–1328

    Article  Google Scholar 

  201. Sinduja B, John SA (2019) Silver nanoparticles capped with carbon dots as a fluorescent probe for the highly sensitive “off–on” sensing of sulfide ions in water. Anal Bioanal Chem 411(12):2597–2605

    Article  Google Scholar 

  202. Reddy B, Dadigala R, Bandi R, Seku K, Koteswararao D, Shalan AE (2021) Microwave-assisted preparation of a silver nanoparticles/N-doped carbon dots nanocomposite and its application for catalytic reduction of rhodamine B, methyl red and 4-nitrophenol dyes. RSC Adv 11(9):5139–5148

    Article  Google Scholar 

  203. Raveendran PV, Renuka NK (2022) Carbon dots as a sustainable alternative to plant extracts for the green synthesis of noble metal nanoparticles. Environ Nanotechnol Monit Manag 18:100676

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Binila K Korah: conceptualization, methodology, writing—original draft preparation, Aiswarya Murali: editing, Bony K John: editing, Neenamol John: editing, Beena Mathew: supervision, validation, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Beena Mathew.

Ethics declarations

Ethics approval

This declaration is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korah, B.K., Murali, A., John, B.K. et al. Carbon dots as a sustainable nanoplatform. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04650-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04650-7

Keywords

Navigation