Skip to main content
Log in

Elegant synthesis of phyto-magnetic Fe3O4@Syzygium cumini and its application for decontamination of Eriochrome Black T dye from aqueous solution and wastewater

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The unrestrained consumption of dyes in everyday life and its release into water bodies have damaged the natural ecology. Several strategies have been developed to address this adverse condition. We report the techno-economic synthesis of phyto-magnetic Fe3O4 Syzygium cumini seed composite (MSC) using FeCl3 and FeSO4 as a metal precursor and S. cumini seed as phyto-anchor and for the decontamination of Erichrome Black T (EBT) from the aqueous phase. The material has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), pH of zero point of charge (pHzpc), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and vibrating-sample magnetometry (VSM) analysis. The BET analysis of the surface was found to be 24.999 m2/g with a pore diameter of 12.205 nm. The VSM analysis confirms the highest saturation magnetization of 13.02 emu/g. The particle size is determined to be 24.199 nm. We investigated the variation in adsorption efficiency under range of conditions, contact time (0–60 min), concentration (10–50 mg/L), pH (3–11), and temperature (298–328 K). Pseudo-second-order kinetics was found to be the best-fit model (R2 = 0.999). The Langmuir isotherm model was found to be the best-fit model, where the maximum adsorption capacity was obtained to be 111 mg/g at 328 K. Thermodynamic analysis suggests a spontaneous, feasible (− 4.801 to − 6.066 kJ/mol), and endothermic process (4.772–13.709 kJ/mol) with a rise in entropy at the liquid–solid interface. Regeneration of the spent material is best in an aqueous-alcoholic medium.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Chowdhary P, Bharagava RN, Mishra S, Khan, N (2020) Role of industries in water scarcity and its adverse effects on environment and human health. Environ.Dev Sustain 235–256. https://doi.org/10.1007/978-981-13-5889-0_12

  2. P Pourtaheri A, Nezamzadeh-Ejhieh A (2015) Photocatalytic properties of incorporated NiO onto clinoptilolite nano-particles in the photodegradation process of aqueous solution of cefixime pharmaceutical capsule. Chem Eng Res Des, 104, 835–843. https://doi.org/10.1016/j.cherd.2015.10.031

  3. Tamiji T, Nezamzadeh-Ejhieh A (2019) Electrocatalytic determination of Hg (II) by the modified carbon paste electrode with Sn (IV)-clinoptilolite nanoparticles. Electrocatalysis 10(5):466–476

    Article  Google Scholar 

  4. Borandegi M, Nezamzadeh-Ejhieh A (2015) Enhanced removal efficiency of clinoptilolite nano-particles toward Co (II) from aqueous solution by modification with glutamic acid. Colloids Surfs 479:35–45. https://doi.org/10.1016/j.colsurfa.2015.03.040

    Article  Google Scholar 

  5. Gürses A, Açıkyıldız M, Güneş K, Gürses MS (2016) Dyes and pigments: their structure and properties. 13–29. https://doi.org/10.1007/978-3-319-33892-7_2

  6. Nezamzadeh-Ejhieh A, Khorsandi M (2010) Heterogeneous photodecolorization of Eriochrome Black T using Ni/P zeolite catalyst. Desalination 262(1–3):79–85. https://doi.org/10.1016/j.desal.2010.05.047

    Article  Google Scholar 

  7. Waghchaure RH, Adole VA, Kushare SS, Shinde RA, Jagdale BS (2023) Visible light prompted and modified ZnO catalyzed rapid and efficient removal of hazardous crystal violet dye from aqueous solution: a systematic experimental study Results in Chemistry, 100773. https://doi.org/10.1016/j.rechem.2023.100773

  8. Fast SA, Gude VG, Truax DD, Martin J, Magbanua BS (2017) A critical evaluation of advanced oxidation processes for emerging contaminants removal Environ. Process 4:283–302. https://doi.org/10.1007/s40710-017-0207-1

    Article  Google Scholar 

  9. Nasiri-Ardali M, Nezamzadeh-Ejhieh A (2020) A comprehensive study on the kinetics and thermodynamic aspects of batch and column removal of Pb (II) by the clinoptilolite–glycine adsorbent. Mater Chem Phys. 240:122142. https://doi.org/10.1016/j.matchemphys.2019.122142

    Article  Google Scholar 

  10. Tamvakos D, Lepadatu S, Antohe VA, Tamvakos A, Weaver PM, Piraux L, Pullini D (2015) Piezoelectric properties of template-free electrochemically grown ZnO nanorod arrays Appl. Surf Sci 356:1214–1220

    Article  Google Scholar 

  11. Ovando-Medina VM, Dávila-Guzmán NE, Pérez-Aguilar NV, Martínez-Gutiérrez H, Antonio-Carmona ID, Martínez-Amador SY, Dector A (2018) A semi-conducting polypyrrole/coffee grounds waste composite for rhodamine B dye adsorption. Iran Polym J 27(3):171–181. https://doi.org/10.1007/s13726-018-0598-5

    Article  Google Scholar 

  12. Abdurrahman FB, Akter M, Abedin MZ (2013) Dyes removal from textile wastewater using orange peels. Int J Sci Technol Res 2(9):47–50

    Google Scholar 

  13. Qaiyum MA, Mohanta J, Kumari R, Samal PP, Dey B, Dey S (2020) Alkali treated water chestnut (Trapa natans L.) shells as a promising phytosorbent for malachite green removal from water. Int J Phytoremediation 24:822–830. https://doi.org/10.1080/15226514.2021.1977912

    Article  Google Scholar 

  14. Qaiyum MA, Kumari R, Mohanta J, Samal PP, Dutta S, Dey B, Dey S (2022) Adsorptive removal of malachite green from water using ethylenediamine fabricated Ni–Cr bimetallic composite. J Clust Sci, 0123456789. https://doi.org/10.1007/s10876-022-02270-1

  15. Kataria N, Garg VK (2017). Removal of Congo red and Brilliant green dyes from aqueous solution using flower-shaped ZnO nanoparticles. J. Environ. Chem. Eng.". (Vol. 5, Issue 6). Elsevier B.V. https://doi.org/10.1016/j.jece.2017.10.035

  16. Yang L, Guo C, Chen S, Wang F, Wang J, An Z, Liu C, Liu H (2009) pH-sensitive magnetic ion exchanger for protein separation. Ind Eng Chem Res 48(2):944–950. https://doi.org/10.1021/ie800969

    Article  Google Scholar 

  17. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH (2021) Heavy metal water pollution: a fresh look about hazards novel and conventional remediation methods. Environ Technol Innov 22:10150410. https://doi.org/10.1016/j.eti.2021.101504

    Article  Google Scholar 

  18. Wong PW, Teng TT, Nik Norulaini NAR (2007) Efficiency of the coagulation-flocculation method for the treatment of dye mixtures containing disperse and reactive dye. Water Pollut 42(1):54–62. https://doi.org/10.2166/wqrj.2007.008

    Article  Google Scholar 

  19. Oyewo OA, Elemike EE, Onwudiwe DC, Onyango MS (2020) Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 164:2477–2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074

    Article  Google Scholar 

  20. Saleh TA, Fadillah G, Ciptawati E, Khaled M (2020) Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. Trends Analyt Chem. 132:116016

    Article  Google Scholar 

  21. Saleh TA (2021) Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies Environ. Technol Innov 24:101821

    Google Scholar 

  22. Saleh TA (2022) Global trends in technologies and nanomaterials for removal of sulfur organic compounds: Clean energy and green environment. J Mol Liq. 119340. https://doi.org/10.1016/j.molliq.2022.119340

  23. Mashkoor F, Nasar A (2020) Magsorbents: Potential candidates in wastewater treatment technology – a review on the removal of methylene blue dyeJ. Magn Magn Mater. 500:166408. https://doi.org/10.1016/j.jmmm.2020.166408

    Article  Google Scholar 

  24. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mate. 16(2). https://doi.org/10.1088/1468-6996/16/2/02350

  25. Liu S, Yu B, Wang S, Shen Y, Cong H (2020) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci. 281:102165. https://doi.org/10.1016/j.cis.2020.102165

    Article  Google Scholar 

  26. Altıntıg E, Altundag H, Tuzen M, Sarı A (2017) Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem Eng Res Des 122:151–163

    Article  Google Scholar 

  27. Saleh TA, Al-Ruwayshid SH, Sarı A, Tuzen M (2020) Synthesis of silica nanoparticles grafted with copolymer of acrylic acrylamide for ultra-removal of methylene blue from aquatic solutions. Eur Polym J. 130:109698. https://doi.org/10.1016/j.eurpolymj.2020.109698

    Article  Google Scholar 

  28. Tuzen M, Sarı A, Saleh TA (2018) Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J Environ Manage 206:170–177

    Article  Google Scholar 

  29. Altintig E, Onaran M, Sarı A, Altundag H, Tuzen M (2018) Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. MateMater Chem Phys 220:313–321

    Article  Google Scholar 

  30. Monsef R, Ghiyasiyan-Arani M, Salavati-Niasari M (2018) Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason Sonochem 42:201–211. https://doi.org/10.1016/j.ultsonch.2017.11.025

    Article  Google Scholar 

  31. Amiri M, Eskandari K, Salavati-Niasari M (2019) Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci 271:101982

    Article  Google Scholar 

  32. Mir N, Salavati-Niasari M (2013) Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater Res Bull 48(4):1660–1667. https://doi.org/10.1016/j.materresbull.2013.01.006

    Article  Google Scholar 

  33. Nosuhi M, Nezamzadeh-Ejhieh A (2017) Voltammetric determination of trace amounts of permanganate at a zeolite modified carbon paste electrode. New J Chem 41(24):15508–15516

    Article  Google Scholar 

  34. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR (2020) Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 5(33):20684–20697. https://doi.org/10.1021/acsomega.0c01905

    Article  Google Scholar 

  35. Mir N, Salavati-Niasari M (2013) Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater Res Bull M48(4):1660–1667. https://doi.org/10.1016/j.materresbull.2013.01.006

    Article  Google Scholar 

  36. Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M (2021) Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason Sonochem. 72:105420. https://doi.org/10.1016/j.ultsonch.2020.105420

    Article  Google Scholar 

  37. Amiri M, Salavati-Niasari M, Akbari A, Gholami T (2017) Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int J Hydrogen Energ 42(39):24846–24860. https://doi.org/10.1016/j.ijhydene.2017.08.077

    Article  Google Scholar 

  38. Panahi A, Monsef R, Imran MK, Mahdi AA, Ruhaima AAK, Salavati-Niasari M (2023) TmVO4/Fe2O3 nanocomposites: Sonochemical synthesis, characterization, and investigation of photocatalytic activity. Int J Hydrogen Energ 48(10):3916–3930

    Article  Google Scholar 

  39. Nosuhi M, Nezamzadeh-Ejhieh A (2011) Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate selective electrode. Electrochimica Acta. 56(24):8334–8341. https://doi.org/10.1016/j.electacta.2011.07.013

    Article  Google Scholar 

  40. Nezamzadeh-Ejhieh A, & Raja G (2013) Modification of nanoclinoptilolite zeolite with hexadecyltrimethylammonium surfactant as an active ingredient of chromate-selective membrane electrode. J. Chem. https://doi.org/10.1155/2013/685290

  41. Hemmatpour P, Nezamzadeh-Ejhieh A (2022) A Z-scheme CdS/BiVO4 photocatalysis towards Eriochrome black T: an experimental design and mechanism study. Chemosphere 307(135925):5

    Google Scholar 

  42. Piri F, Mollahosseini A, Khadir A, Milani Hosseini M (2019) Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J Environ Chem Eng 7(5):103338. https://doi.org/10.1016/j.jece.2019.103338

    Article  Google Scholar 

  43. Muthukumaran C, Sivakumar VM, Thirumarimurugan M (2016) Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J Taiwan Inst Chem Eng s 63:354–362. https://doi.org/10.1016/j.jtice.2016.03.034

    Article  Google Scholar 

  44. Hua Y, Xiao J, Zhang Q, Cui C, Wang C (2018) Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes. Nanoscale Res. Lett. 13. https://doi.org/10.1186/s11671-018-2476-7

  45. Duman O, Özcan C, Gürkan Polat T, Tunç S (2019) Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-Κ-carrageenan-Fe3O4 nanocomposites. Environ Pollut 244:723–732. https://doi.org/10.1016/j.envpol.2018.10.071

    Article  Google Scholar 

  46. Maderova Z, Baldikova E, Pospiskova K, Safarik I, Safarikova M (2016) Removal of dyes by adsorption on magnetically modified activated sludge. Int J Environ Sci Technol 13(7):1653–1664. https://doi.org/10.1007/s13762-016-1001-

    Article  Google Scholar 

  47. Li K, Yan J, Zhou Y, Li B, Li X (2021) β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel as a superabsorbent for adsorption cationic dyes: adsorption performance, adsorption mechanism and hydrogel column process investigates. J Mol Liq 335:116291

    Article  Google Scholar 

  48. Venkateswarlu S, Kumar BN, Prasad CH, Venkateswarlu P, JyothiNVV, (2014) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B 449:67–71. https://doi.org/10.1016/j.physb.2014.04.031

    Article  Google Scholar 

  49. Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HM, Nuhanović M (2021) Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications. J Mol Liq 335:116567. https://doi.org/10.1016/j.molliq.2021.116291

    Article  Google Scholar 

  50. King P, Rakesh N, Beenalahari S, Kumar YP, Prasad VSRK (2007) Removal of lead from aqueous solution using Syzygium cumini L.: equilibrium and kinetic studies. J Hazard Mater 142(1–2):340–347

    Article  Google Scholar 

  51. King P, Rakesh N, Lahar SB, Kumar YP, Prasad VSRK (2008) Biosorption of zinc onto Syzygium cumini L.: equilibrium and kinetic studies. Chem Eng J. 144(2):181–187

    Article  Google Scholar 

  52. Nezamzadeh-Ejhieh A, Shirzadi A (2014) Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 107:136–144. https://doi.org/10.1016/j.chemosphere.2014.02.015

    Article  Google Scholar 

  53. Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257(17):7746–7751

    Article  Google Scholar 

  54. Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ Sci Pollut Res 22:16721–16731

    Article  Google Scholar 

  55. Saleh TA (2018) Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. J Clean Prod 172:2123–2132

    Article  Google Scholar 

  56. Gavira JM, Hernanz A, Bratu I (2003) Dehydration of β-cyclodextrin: An IR ν(OH) band profile analysis. Vib Spectrosc 32(2):137–146. https://doi.org/10.1016/S0924-2031(03)00029-8

    Article  Google Scholar 

  57. De Campos VB, Mello MLS (2011) Collagen type I amide I band infrared spectroscopy. Micron 42(3):283–289. https://doi.org/10.1016/j.micron.2010.09.010

    Article  Google Scholar 

  58. Paschoal VH, Faria LFO, Ribeiro MCC (2017) Vibrational Spectroscopy of Ionic Liquids. Chem Rev 117(10):7053–7112. https://doi.org/10.1021/acs.chemrev.6b00461

    Article  Google Scholar 

  59. Wulandari P, Nagahiro T, Fukada N, Kimura Y, Niwano M, Tamada K (2015) Characterization of citrates on gold and silver nanoparticles. J Colloid Interface Sci 438:244–248. https://doi.org/10.1016/j.jcis.2014.09.07

    Article  Google Scholar 

  60. Kabiri K, Zohuriaan-Mehr MJ, Mirzadeh H, Kheirabadi M (2010) Solvent-, ion-and pH-specific swelling of poly (2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels.J. Polym Res 17:203–212

    Article  Google Scholar 

  61. Singha B, Naiya TK, Kumar Bhattacharya A, Das SK (2011) Cr (VI) ions removal from aqueous solutions using natural adsorbents–FTIR studies. J Environ Prot Ecol 2(06):729

    Article  Google Scholar 

  62. Taufiq A, Nuroni MS, Hidayat N, Subadra SUI, Sunaryono S, Hidayat A, Yudyanto Y (2020) Effect of polyaniline on structural and optical characteristics of Fe3O4 and TiO2 nanoparticles. Key Eng 851:9–15. https://doi.org/10.4028/www.scientific.net/KEM.851.9

    Article  Google Scholar 

  63. Doula MK (2007) Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity. Chemosphere 67(4):731–740

    Article  Google Scholar 

  64. Hemmatpour P, Nezamzadeh-Ejhieh A, Ershadi A (2022) A brief study on the Eriochrome Black T photodegradation kinetic by CdS/BiVO4 coupled catalyst. Mater Res Bull. 151:111830. https://doi.org/10.1016/j.materresbull.2022.111830

    Article  Google Scholar 

  65. Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13(1):251–256

    Article  Google Scholar 

  66. Mondal NK, Kar S (2018) Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. ApP Water Sci 8:1–12. https://doi.org/10.1007/s13201-018-0811-x

    Article  Google Scholar 

  67. Kumari R, Dey S (2019) Synthesis of porous iron-zirconium mixed oxide fabricated ethylene diamine composite for removal of cationic dye. Desalin Water Treat 158:319–329

    Article  Google Scholar 

  68. Eshraghi F, Nezamzadeh-Ejhieh A (2018) EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb (II) removal. Environ Sci Pollut Res 25:14043–14056

    Article  Google Scholar 

  69. Qaiyum MA, Mohanta J, Kumari R, Samal PP, Dey B, Dey S (2022) Alkali treated water chestnut (Trapa natans L.) shells as a promising phytosorbent for malachite green removal from water. Int Phyto 24(8):822–830. https://doi.org/10.1080/15226514.2021.1977912

    Article  Google Scholar 

  70. Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R (2016) Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: kinetic, equilibrium, and thermodynamic studies. J Mol Liq 221:1–11. https://doi.org/10.1016/j.molliq.2016.05.053

    Article  Google Scholar 

  71. Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332. https://doi.org/10.1016/j.ecoleng.2016.03.015

    Article  Google Scholar 

  72. Ghosh I, Kar S, Chatterjee T, Bar N, Das SK (2021) Adsorptive removal of Safranin-O dye from aqueous medium using coconut coir and its acid-treated forms: adsorption study, scale-up design, MPR and GA-ANN modeling. Sustain Chem Pharm 19:100374

    Article  Google Scholar 

  73. al Sadat Shafiof M, Nezamzadeh-Ejhieh A (2020) A comprehensive study on the removal of Cd (II) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: experimental design, kinetic and thermodynamic aspects. Solid State Sci 99:106071. https://doi.org/10.1016/j.solidstatesciences.2019.106071

    Article  Google Scholar 

  74. Naghash A, Nezamzadeh-Ejhieh A (2015) Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions. J Ind Eng Chem 31:185–191. https://doi.org/10.1016/j.jiec.2015.06.022

    Article  Google Scholar 

  75. Nezamzadeh-Ejhieh A, Kabiri-Samani M (2013) Effective removal of Ni (II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. J Hazard Mater 260:339–349. https://doi.org/10.1016/j.jhazmat.2013.05.014

    Article  Google Scholar 

  76. Shirzadi H, Nezamzadeh-Ejhieh A (2017) An efficient modified zeolite for simultaneous removal of Pb (II) and Hg (II) from aqueous solution. J Mol Liq 230:221–229. https://doi.org/10.1016/j.molliq.2017.01.029

    Article  Google Scholar 

  77. Mehrali-Afjani M, Nezamzadeh-Ejhieh A (2020) Efficient solid amino acid–clinoptilolite nanoparticles adsorbent for Mn (II) removal: a comprehensive study on designing the experiments, thermodynamic and kinetic aspects. Solid State Scie. 101:106124. https://doi.org/10.1016/j.solidstatesciences.2020.106124

    Article  Google Scholar 

  78. Heidari-Chaleshtori M, Nezamzadeh-Ejhieh A (2015) Clinoptilolite nano-particles modified with aspartic acid for removal of Cu (II) from aqueous solutions: isotherms and kinetic aspects. New Jf Chem 39(12):9396–9406

    Article  Google Scholar 

  79. Nezamzadeh-Ejhieh A, Afshari E (2012) Modification of a PVC-membrane electrode by surfactant modified clinoptilolite zeolite towards potentiometric determination of sulfide. Microporous Mater. 153:267–274. https://doi.org/10.1016/j.micromeso.2011.12.054

    Article  Google Scholar 

  80. Shaikh AA, Patil MR, Jagdale BS, Adole VA (2023) Synthesis and characterization of Ag doped ZnO nanomaterial as an effective photocatalyst for photocatalytic degradation of Eriochrome Black T dye and antimicrobial agent. Inorg Chem Commun 151:110570

    Article  Google Scholar 

  81. Karimi MH, Mahdavinia GR, Massoumi B, Baghban A, Saraei M (2018) Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. Int J Biol Macromol 113:361–375. https://doi.org/10.1016/j.ijbiomac.2018.02.102

    Article  Google Scholar 

  82. Shanmugam P, Wei W, Qian K, Jiang Z, Lu J, Xie J (2019) Efficient removal of Erichrome black T with biomass-derived magnetic carbonaceous aerogel sponge. Mater Sci Eng B 248:114387. https://doi.org/10.1016/j.mseb.2019.114387

    Article  Google Scholar 

  83. Raghu MS, Yogesh Kumar K, Prashanth MK, Prasanna BP, Vinuth R, Pradeep Kumar CB (2017) Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. J Water Process Eng 17:22–31. https://doi.org/10.1016/j.jwpe.2017.03.001

    Article  Google Scholar 

  84. Elkhider KHA, Ihsanullah I, Zubair M, Manzar MS, Mu’azu ND, Al-Harthi MA (2020) Synthesis, characterization and dye adsorption performance of strontium ferrite decorated bentonite-CoNiAl magnetic composite. Arab J Sci Eng 45(9):7397–7408. https://doi.org/10.1007/s13369-020-04544-0

    Article  Google Scholar 

  85. Besharati N, Alizadeh N (2019) Synthesis of Fe3O4/Eggshell and egg membrane nanocomposite and application for adsorption of cationic and anionic dyes. J Nanoanalysis 6(4):217–227

    Google Scholar 

  86. Moeinpour F, Alimoradi A, Kazemi M (2014) Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. J Environ Health Sci Eng 12:1–7. https://doi.org/10.1186/s40201-014-0112-8

    Article  Google Scholar 

  87. Mehrali-Afjani M, Nezamzadeh-Ejhieh A (2020) Efficient solid amino acid–clinoptilolite nanoparticles adsorbent for Mn (II) removal: a comprehensive study on designing the experiments, thermodynamic and kinetic aspects. Solid State Sci 101:106124. https://doi.org/10.1016/j.solidstatesciences.2020.106124

    Article  Google Scholar 

  88. Alizadeh N, Shariati S, Besharati N (2017) Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int J Environ Res 11:197–206. https://doi.org/10.1007/s41742-017-0019-

    Article  Google Scholar 

  89. Elwakeel KZ, El-Bindary AA, El-Sonbati AZ, Hawas AR (2017) Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Can J Chem 95:807. https://doi.org/10.1139/cjc-2016-0641

    Article  Google Scholar 

  90. Safarik I, Horska K, Svobodova B, Safarikova M (2021) Magnetically modified spent coffee grounds for dyes removal. Eur Food Res Technol 234:345–350. https://doi.org/10.1007/s00217-011-1641-3

    Article  Google Scholar 

  91. Waghchaure RH, Adole VA, Jagdale BS (2022) Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: a concise review. Inorg Chem Commun 109764. https://doi.org/10.1016/j.inoche.2022.109764

  92. Kaur Y, Jasrotia T, Kumar R, Chaudhary G R, Chaudhary S (2021) Adsorptive removal of Eriochrome black T (EBT) dye by using surface active low cost zinc oxide nanoparticles: a comparative overview. Chemosphere, 278, 130366.https://doi.org/10.1016/j.chemosphere.2021.130366

  93. Franco P, Sacco O, De Marco I, SanninoD VV (2020) Photocatalytic degradation of eriochrome black-T azo dye using Eu-doped ZnO prepared by supercritical antisolvent precipitation route: a preliminary investigation. Top Catal 63:1193–1205. https://doi.org/10.1007/s11244-020-01279-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank MNIT Jaipur, IIT Kanpur India for sample characterization and the Central University of Jharkhand for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, writing the original manuscript: Md Atif Qaiyum; data analysis: Priyanka Priyadarsini Samal; review and editing: Banashree Dey; review, editing, and overall supervision: Soumen Dey.

Corresponding author

Correspondence to Soumen Dey.

Ethics declarations

Ethical approval

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaiyum, M.A., Priyadarsini Samal, P., Dey, B. et al. Elegant synthesis of phyto-magnetic Fe3O4@Syzygium cumini and its application for decontamination of Eriochrome Black T dye from aqueous solution and wastewater. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04372-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04372-w

Keywords

Navigation