Skip to main content

Advertisement

Log in

Feasibility assessment of biomass for sustainable power generation to mitigate climate change in a rural cluster: a case study in India

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomass is a clean and green renewable energy source that can address the energy needs of rural India. This paper is a case study of three villages—Ranoli, Pranpura, and Kishanpur—in Bawal tehsil of Haryana, India, assessing the biomass resource and power generation potential, greenhouse gas emissions (GHGs), and climate impact. The results show that study area can produce 2.13 kt of biomass annually, equivalent to 258.6 kW of power, with biomass resource density ranging between 0.167 and 0.205 kt/km2. The estimated emissions from biomass power generation are 453.91 t of \({\mathrm{CO}}_{2}\), 1.79 t of \({\mathrm{CH}}_{4}\), and 0.174 t of \({\mathrm{N}}_{2}\mathrm{O}\). The global temperature change potential (GTP) climate metric is used to estimate the impacts of biomass power emissions on global surface temperature, showing that the first year’s emissions would increase the global temperature by 0.27, 1, and 0.54 nK for biomass, coal, and natural gas-based power, respectively. The study highlights the potential of biomass in climate change mitigation and identifies challenges, such as spatio-temporal distribution, low power density, and competing uses, that need to be addressed for its large-scale adoption. Overall, this study contributes to the understanding of biomass energy potential and its role in sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data analyzed during this study are included in the reference list of this published article.

References

  1. The lofty goal of a 5 trillion economy- when and how. Financial Express (2022) https://www.financialexpress.com/opinion/the-lofty-goal-of-a-5-trillion-economy-when-and-how/2586640/. Accessed 10 Feb 2023

  2. Rajanna S, Saini RP (2016) Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy 111:803–817. https://doi.org/10.1016/j.energy.2016.06.005

    Article  Google Scholar 

  3. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809. https://doi.org/10.1016/j.enpol.2012.10.046

    Article  Google Scholar 

  4. Peters GP, Andrew R, Boden T, Canadell JG, Ciais P, Quéré CL, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nat Clim Chang 3:4–6. https://doi.org/10.1038/nclimate1783

    Article  Google Scholar 

  5. Davis SJ, Shearer C (2014) Climate change: a crack in the natural-gas bridge. Nature 514:436–437. https://doi.org/10.1038/nature13927

    Article  Google Scholar 

  6. Impact of Russia- Ukraine war on Indian economy. Parliment library India (2022) https://parliamentlibraryindia.nic.in/lcwing/Impact%20of%20Russia-Ukraine%20war%20on%20Indian%20Economy.pdf. Accessed 10 Jan 2023

  7. Power sector glance all India. Power Ministry (2023) https://powermin.gov.in/en/content/power-sector-glance-all-india. Accessed 10 Feb 2023

  8. Biomass energy. E A I. India (2022) https://www.eai.in/ref/ae/bio/bio.html#:~:text=India%20produces%20about%20450%2D500,in%20the%20country%20at%20present. Accessed 15 Dec 2022

  9. Agri share in GDP hit 20% after 17 years: Economic survey. Down to Earth (2021) https://www.downtoearth.org.in/news/agriculture/agri-share-in-gdp-hit-20-after-17-years-economic-survey-75271. Accessed 10 Feb 2023

  10. Economic Survey 2021–22. India Budget (2022). https://www.indiabudget.gov.in/economicsurvey/ebook_es2022/index.html. Accessed 15 Dec 2022

  11. Chauhan S (2012) District wise agriculture biomass resource assessment for power generation: a case study from an Indian state, Punjab. Biomass Bioenergy 37:205–212. https://doi.org/10.1016/j.biombioe.2011.12.011

    Article  Google Scholar 

  12. Chauhan S (2010) Biomass resources assessment for power generation: a case study from Haryana state, India. Biomass Bioenergy 34:1300–1308. https://doi.org/10.1016/j.biombioe.2010.04.003

    Article  Google Scholar 

  13. Das S, Jash T (2009) District-level biomass resource assessment: a case study of an indian state West Bengal. Biomass Bioenergy 33(1):137–143. https://doi.org/10.1016/j.biombioe.2008.05.001

    Article  Google Scholar 

  14. Singh B, Szamosi Z, Siménfalvi Z, Rosas-Casals M (2020) Decentralized biomass for biogas production. Evaluation and potential assessment in Punjab (India). Energy Rep 6:1702–1714. https://doi.org/10.1016/j.egyr.2020.06.009

    Article  Google Scholar 

  15. Singh J (2015) Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective - a case study of Punjab. Renew Sustain Energy Rev 42:286–297. https://doi.org/10.1016/j.rser.2014.10.015

    Article  Google Scholar 

  16. Vijay V, Kapoor R, Singh P, Hiloidhari M, Ghosh P (2022) Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: a regional case study in India. Environ Res 212:113257. https://doi.org/10.1016/j.envres.2022.113257

    Article  Google Scholar 

  17. Liu Z, Johnson TG, Altman I (2016) The moderating role of biomass availability in biopower cofiring—A sensitivity analysis. J Clean Prod 135:523–532. https://doi.org/10.1016/J.JCLEPRO.2016.06.101

    Article  Google Scholar 

  18. Ko S, Lautala P, Handler RM (2018) Securing the feedstock procurement for bioenergy products: a literature review on the biomass transportation and logistics. J Clean Prod 200:205–218. https://doi.org/10.1016/j.jclepro.2018.07.241

    Article  Google Scholar 

  19. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447. https://doi.org/10.1016/j.resconrec.2009.03.013

    Article  Google Scholar 

  20. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Change 68:281–302. https://doi.org/10.1007/s10584-005-1146-9

    Article  Google Scholar 

  21. Sarofim MC (2012) The GTP of methane: modeling analysis of temperature impacts of methane and carbon dioxide reductions. Environ Model Assess 17:231–239. https://doi.org/10.1007/s10666-011-9287-x

    Article  Google Scholar 

  22. NSDP per capita: Haryana. C E I C (2022) https://www.ceicdata.com/en/india/memo-items-state-economy-net-state-domestic-product-per-capita/nsdp-per-capita-haryana. Accessed 15 Dec 2022

  23. India net national income per capita. Statista (2022) https://www.statista.com/statistics/802122/india-net-national-income-per-capita/. Accessed 15 Dec 2022

  24. Haryana population. Census 2011 (2011) https://www.census2011.co.in/census/state/haryana.html#:~:text=Haryana%20Rural%20Population&text=Total%20population%20of%20rural%20areas,%2D2011)%20was%2065.12%25. Accessed 15 Dec 2022

  25. About 70 percent Indians live in rural areas. Hindu (2011) https://www.thehindu.com/news/national/About-70-per-cent-Indians-live-in-rural-areas-Census-report/article13744351.ece. Accessed 15 Dec 2022

  26. Godara R, Krishan B (2020) An economics analysis: trend & performance of agriculture production in Haryana. Int J Innov Sci Technol 5:1184–89. https://doi.org/10.38124/IJISRT20JUN924

    Article  Google Scholar 

  27. Nehra M, Jain S (2023) Estimation of renewable biogas energy potential from livestock manure: a case study of india. Bioresour Technol Rep 22:101432. https://doi.org/10.1016/j.biteb.2023.101432

    Article  Google Scholar 

  28. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  29. India per capita availability of power. Statista (2022) https://www.statista.com/statistics/898140/india-per-capita-availability-of-power-haryana/#:~:text=In%20fiscal%20year%202021%2C%20the,was%20about%202%2C094%20kilowatt%20hour. Accessed 15 Dec 2022

  30. India’s peak power demand touches new high of 210,793 MW. Times Now News (2022) https://www.timesnownews.com/business-economy/industry/indias-peak-power-demand-at-new-high-of-210793mw-article-92124592#:~:text=The%20All%20India%20electricity%20demand%20met%20on%209th,year%20was%20200%2C570MW%2C%20recorded%20on%20July%207%2C%202021. Accessed 10 Feb 2023

  31. Ravindranath NH, Somashekar HI, Dasappa S, Reddy CNJ (2004) Sustainable biomass power for rural India: case study of biomass gasifier for village electrification. Curr Sci 87(7):932–41 http://eprints.iisc.ac.in/id/eprint/2389

  32. Brahma A, Saikia K, Hiloidhari M, Baruah DC (2016) GIS based planning of a biomethanation power plant in Assam, India. Renew Sustain Energy Rev 62:596–608. https://doi.org/10.1016/j.rser.2016.05.009

    Article  Google Scholar 

  33. Hiloidhari M, Baruah DC (2011) Rice straw residue biomass potential for decentralized electricity generation: a GIS based study in Lakhimpur district of Assam. India Energy Sustain Dev 15(3):214–222. https://doi.org/10.1016/j.esd.2011.05.004

    Article  Google Scholar 

  34. Kumari S, Hiloidhari M, Kumari N, Naik S, Dahiya R (2018) Climate change impact of livestock CH4 emission in India: global temperature change potential (GTP) and surface temperature response. Ecotoxicol Environ Saf 147:516–522. https://doi.org/10.1016/j.ecoenv.2017.09.003

    Article  Google Scholar 

  35. Hiloidhari M, Baruah DC, Kumari M, Kumari S, Thakur IS (2019) Prospect and potential of biomass power to mitigate climate change: a case study in India. J Clean Prod 220:931–944. https://doi.org/10.1016/j.jclepro.2019.02.194

    Article  Google Scholar 

  36. Kishore VVN, Bhandari PM, Gupta P (2004) Biomass energy technologies for rural infrastructure and village power – opportunities and challenges in the context of global climate change concerns. Energy Policy 32:801–810

    Article  Google Scholar 

  37. Balachandra P (2011) Modern energy access to all in rural India: an integrated implementation strategy. Energy Policy 39:7803–7814. https://doi.org/10.1016/j.enpol.2011.09.026

    Article  Google Scholar 

  38. Vijay V, Subbarao PM, Chandra R (2021) An evaluation on energy self–sufficiency model of a rural cluster through utilization of biomass residue resources: A case study in India. Energy Clim Change 2:100036. https://doi.org/10.1016/j.egycc.2021.100036

    Article  Google Scholar 

  39. Schlömer S, Bruckner T, Fulton L, Hertwich E, McKinnon A, Perczyk D, Roy J, Schaeffer R, Sims R, Smith P, Wiser R (2014) In: Climate change: mitigation of climate Change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, (ed) O. Edenhofer R. Pichs-Madruga Y, Sokona E, Farahani S, Kadner K, Seyboth A, Adler I, Baum S, Brunner P, Eickemeier B, Kriemann J, Savolainen S, Schlömer C, von Stechow T, Zwickel and JC. Minx, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Annex III, pp 1329–1356

  40. Bruckner T, Bashmakov IA, Mulugetta Y, Chum H, de la Vega Navarro A, Edmonds J, FaaijA, Fungtammasan B, Garg A, Hertwich E, Honnery D, Infield D, Kainuma M, Khennas S, Kim S, Nimir HB, Riahi K, Strachan N, Wiser R, Zhang X (2014) In: Climate change: mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, (ed) Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 7:511–597

  41. Spath PL, Mann MK, Kerr DR (1999) Life cycle assessment of coal-fired power production. NREL, Colorado, USA

    Book  Google Scholar 

  42. Spath PL, Mann MK (2000) Life cycle assessment of a natural gas combined-cycle power generation system. Colorado, USA NREL

    Book  Google Scholar 

  43. Oreggioni GD, Singh B, Cherubini F, Guest G, Lausselet C, Luberti M, Ahn H, Strømman AH (2017) Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int J Greenh Gas Con 57:162–172. https://doi.org/10.1016/j.ijggc.2016.11.025

    Article  Google Scholar 

  44. Iordan C, Lausselet C, Cherubini F (2016) Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers. J Environ Manage 184:517–527. https://doi.org/10.1016/j.jenvman.2016.10.030

    Article  Google Scholar 

  45. Cardoen D, Joshi P, Diels L, Sarma PM, Pant D (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recycl 102:39–48. https://doi.org/10.1016/j.resconrec.2015.06.003

    Article  Google Scholar 

  46. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  47. Trivedi A, Ranjan A, Kaur S, Jha B, Vijay V, Chandra R et al (2017) Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India. Energy 127:310–317. https://doi.org/10.1016/j.energy.2017.03.138

    Article  Google Scholar 

  48. Vijay VK, Kapoor R, Trivedi A, Vijay V (2015) Biogas as clean fuel for cooking and transportation needs in India. Advances in Bioprocess Technology 257–275. https://doi.org/10.1007/978-3-319-17915-5_14

  49. Vijay V, Chandra R, Subbarao PMV (2022) Biomass as a means of achieving rural energy self-sufficiency: a concept. Built Environ Proj Asset Manag 12(3):382–400. https://doi.org/10.1108/BEPAM-01-2021-0012

    Article  Google Scholar 

  50. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresour Technol 101(13):4826–4833. https://doi.org/10.1016/j.biortech.2009.11.049

    Article  Google Scholar 

  51. Power density primer. Vaclavsmil (2010) https://www.vaclavsmil.com/wp-content/uploads/docs/smil-article-power-density-primer.pdf. Accessed 10 Feb 2023

  52. Kludze H, Deen B, Weersink A, Van Acker R, Janovicek K, De Laporte A, McDonald I (2013) Estimating sustainable crop residue removal rates and costs based on soil organic matter dynamics and rotational complexity. Biomass Bioenergy 56:607–618. https://doi.org/10.1016/j.biombioe.2013.05.036

    Article  Google Scholar 

  53. Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28(3):139–163. https://doi.org/10.1080/07352680902776507

    Article  Google Scholar 

  54. Bhatt R, Kukal SS, Busari MA, Arora S, Yadav M (2015) Sustainability issues on rice-wheat cropping system. Int Soil Water Conserv Res 4:64–74. https://doi.org/10.1016/j.iswcr.2015.12.001

    Article  Google Scholar 

  55. Crutzen PJ, Mosier AR, Smith AR, Winiwarter W (2016) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. In: Crutzen PJ, Brauch HS (eds) A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene, vol. 12, Springer, pp 227–238. https://doi.org/10.1007/978-3-319-27460-7

  56. Crop production statistics. DAC (2022) https://aps.dac.gov.in/APY/Public_Report1.aspx. Accessed 15 Jan 2023

  57. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54. https://doi.org/10.1016/S0960-8524(01)00119-5

    Article  Google Scholar 

  58. Materials and methods. IISc (2008) http://wgbis.ces.iisc.ernet.in/energy/paper/Biogas/materials.html. Accessed 15 Dec 2022

  59. Giuntoli J, Agostini A, Caserini S, Lugato E, Baxter D, Marelli L (2016) Climate change impacts of power generation from residual biomass. Biomass Bioenergy 89:146–158. https://doi.org/10.1016/j.biombioe.2016.02.024

    Article  Google Scholar 

  60. Iordan C, Lausselet C, Cherubini F (2016) Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers. JEnviron Manage 184:517–527. https://doi.org/10.1016/j.jenvman.2016.10.030

    Article  Google Scholar 

  61. Benti NE, Gurmesa GS, Argaw T, Aneseyee AB, Gunta S, Kassahun GB, Aga GS, Asfaw AA (2021) The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnol Biofuels 14:209. https://doi.org/10.1186/s13068-021-02060-3

    Article  Google Scholar 

  62. Albashabsheh NT, HeierStamm JL (2021) Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review. Biomass Bioenergy 144:105888. https://doi.org/10.1016/j.biombioe.2020.105888

    Article  Google Scholar 

  63. GOBAR-Dhan. Down to Earth (2023) https://www.downtoearth.org.in/blog/energy/gobar-dhan-scheme-announced-in-budget-a-welcome-step-but-challenges-ahead-87558 . Accessed 10 Feb 2023

  64. Haryana bio-energy policy 2018. C B I P (2018) http://www.cbip.org/policies2019/PD_07_Dec_2018_Policies/Haryana/2-Bio%20Energy/1%20Summary%20Haryana%20Bio%20Energy%20Policy-2018.pdf . Accessed 10 Feb 2023

  65. Ravindranath D, Rao SSN (2015) Bioenergy in India: barriers and policy options. https://ledsgp.org/app/uploads/2015/07/Bioenergy-in-India.pdf. Accessed 20 Dec 2022

  66. Balachandra P (2011) Dynamics of rural energy access in India: an assessment. Energy 36:5556–5567. https://doi.org/10.1016/j.energy.2011.07.017

    Article  Google Scholar 

  67. Mittal S, Ahlgren EO, Shukla PR (2018) Barriers to biogas dissemination in India: a review. Energy Policy 112:361–370. https://doi.org/10.1016/j.enpol.2017.10.027

    Article  Google Scholar 

  68. National policy on biofuels-2018. Press Information Bureau (2022) https://www.pib.gov.in/PressReleasePage.aspx?PRID=1826265 . Accessed 10 Feb 2023

  69. Bioenergy schemes. MNRE (2023) https://mnre.gov.in/bio-energy/schemes#:~:text=The%20objective%20of%20the%20Biomass,in%20Industries%20in%20the%20country. Accessed 30 Apr 2023

  70. Roni MS, Chowdhury S, Mamun S, Marufuzzaman M, Lein W, Johnson S (2017) Biomass co-firing technology with policies, challenges, and opportunities: a global review. Renew Sustain Energy Rev 78:1089–1101. https://doi.org/10.1016/j.rser.2017.05.023

    Article  Google Scholar 

  71. National bio-fuels policy 2018. Ministry of petroleum and natural gas (2022) https://mopng.gov.in/files/article/articlefiles/Notification-15-06-2022-Amendments-in-NPB-2018.pdf . Accessed 30 Apr 2023

  72. Waste to energy programme. Ministry of new and renewable energy (2020) https://mnre.gov.in/img/documents/uploads/file_f-1667463970882.pdf , Accessed 30 Apr 2023

  73. Singh J (2017) Management of the agricultural biomass on decentralized basis for producing sustainable power in India. J Clean Prod 142:3985–4000. https://doi.org/10.1016/j.jclepro.2016.10.056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mayank Nehra: conceptualization, methodology, investigation, formal analysis, visualisation, writing—original draft; Sheilza Jain: conceptualization, resources, data curation, writing—review and editing and supervision.

Corresponding author

Correspondence to Mayank Nehra.

Ethics declarations

Ethics approval

This is not applicable to my research paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehra, M., Jain, S. Feasibility assessment of biomass for sustainable power generation to mitigate climate change in a rural cluster: a case study in India. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04351-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04351-1

Keywords

Navigation