Skip to main content

Advertisement

Log in

Facile green synthesis of zinc oxide nanoparticles using Artocarpus hirsutus seed extract: spectral characterization and in vitro evaluation of their potential antibacterial-anticancer activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Due to nanoscale properties that can be fine-tuned to treat different diseases, putting nanotechnology into the field of biology has become a popular way to study medicine. Here, we synthesized zinc oxide nanoparticles using the seed extract of Artocarpus hirsutus. A qualitative phytochemical study of the seed extract confirmed the presence of flavonoids and proteins, which encouraged its use in the antibacterial study. The synthesized nanoparticles are characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), EDAX (energy dispersive X-ray analysis), UV–visible spectroscopy, and FTIR (Fourier transform infrared spectroscopy). XRD analysis revealed the particles are crystalline in nature, with an average crystal size of about 25 nm. SEM spectroscopic studies revealed the particles were rod- and spherical-shaped, and the EDAX spectrum confirms the presence of zinc and oxygen in the synthesized nanoparticles. The UV–vis spectrum revealed absorption spectra at 266 nm and 365 nm that confirmed the presence of ZnO nanoparticles. The presence of proteins and amide groups acts as a reducing and stabilizing agent, which was confirmed from the FTIR spectrum. Antibacterial studies against two gastro-intestinal bacteria (Enterobacter aerogenes and Listeria monocytogenes) were conducted using the well-diffusion method and scanning electron microscopy. The impact of zinc oxide nanoparticles on the HT-29 colon cancer cell line was investigated. MTT, DCFDA labeling, DNA fragmentation tests, flow cytometry, and gene expression on Bcl-2 were used to reveal that ZnO nanoparticles had remarkable cytotoxicity activity against the HT-29 cell line. The results highlight the efficacy of zinc oxide nanoparticles in penetrating gram-negative bacteria more than gram positive bacteria and their efficient anticancer activity on HT-29 colon cancer cells. This research reports the synthesis of zinc oxide nanoparticles for the first time using Artocarpus hirsutus seed extract and also the evaluation of their antibacterial and anticancer activity on HT colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

H2DCFDA:

2′,7′-Dichlorofluorescein

DNA:

Deoxyribonucleic acid

EDX:

Energy dispersive X-ray

MIC:

Minimum inhibitory concentration

FTIR:

Fourier transform infrared

JCPDS:

Joint Committee on Powder Diffraction Standards

NP:

Nanoparticle

ROS:

Reactive oxygen species

SEM:

Scanning electron microscopy

UV:

Ultraviolet

XRD:

X-ray diffraction

ZnO:

Zinc oxide

References

  1. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta - Part A: Mol Biomol Spectrosc 136:864–870. https://doi.org/10.1016/j.saa.2014.09.105

    Article  Google Scholar 

  2. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  3. Sampath S, Madhavan Y, Muralidharan M et al (2022) A review on algal mediated synthesis of metal and metal oxide nanoparticles and their emerging biomedical potential. J Biotechnol 360:92–109. https://doi.org/10.1016/j.jbiotec.2022.10.009

    Article  Google Scholar 

  4. Annamalai J, Nallamuthu T (2016) Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl Nanosci 6:259–265. https://doi.org/10.1007/s13204-015-0426-6

    Article  Google Scholar 

  5. Gnanasangeeta D, Thambavani SD (2014) Facile and eco-friendly method for the synthesis of zinc oxide nanoparticles using azadiracta and embilica. Int J Pharm Sci Res 5:2866–2873. https://doi.org/10.13040/IJPSR.0975-8232.5(7).2866-73

    Article  Google Scholar 

  6. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23:517–523. https://doi.org/10.1016/j.sjbs.2015.05.016

    Article  Google Scholar 

  7. Chan YY, Pang YL, Lim S, Chong WC (2021) Facile green synthesis of ZnO nanoparticles using natural-based materials: properties, mechanism, surface modification and application. J Environ Chem Eng 9:105417. https://doi.org/10.1016/j.jece.2021.105417

    Article  Google Scholar 

  8. Singh TA, Sharma A, Tejwan N et al (2021) A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interf Sci 295:102495. https://doi.org/10.1016/j.cis.2021.102495

    Article  Google Scholar 

  9. Yasin AS, Hyun KD, Lee K (2021) One-pot synthesis of activated carbon decorated with ZnO nanoparticles for capacitive deionization application. J Alloys Compd 870:159422. https://doi.org/10.1016/j.jallcom.2021.159422

    Article  Google Scholar 

  10. Sunderam V, Thiyagarajan D, Lawrence AV et al (2019) In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci 26:455–459. https://doi.org/10.1016/j.sjbs.2018.12.001

    Article  Google Scholar 

  11. Devi RS, Gayathri R (2014) Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. Int J Curr Eng Technol 44:2444–2446. https://doi.org/10.4028/www.scientific.net/AMR.952.137

    Article  Google Scholar 

  12. Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6:895–901. https://doi.org/10.1007/s13204-015-0496-5

    Article  Google Scholar 

  13. Khatua A, Prasad A, Behuria HG et al (2022) Evaluation of antimicrobial, anticancer potential and Flippase induced leakage in model membrane of Centella asiatica fabricated MgONPs. Biomaterials Adv 138:212855. https://doi.org/10.1016/j.bioadv.2022.212855

    Article  Google Scholar 

  14. Saravanakkumar D, Sivaranjani S, Umamaheswari M et al (2016) Green synthesis of ZnO nanoparticles using Trachyspermum ammi seed extract for antibacterial investigation. Der Pharma Chem 8:173–180

    Google Scholar 

  15. Sundaraselvan G, Darlin Quine S (2017) Green synthesis of zinc oxide nanoparticles using seed extract of Murraya koenigii and their antimicrobial activity against some human pathogens. Share Your Innov JACS Dir J Nanosci Technol Visit J 3:289–292

    Google Scholar 

  16. Fazlzadeh M, Khosravi R, Zarei A (2017) Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr(VI) from aqueous solution. Ecol Eng 103:180–190. https://doi.org/10.1016/j.ecoleng.2017.02.052

    Article  Google Scholar 

  17. Ogunyemi SO, Abdallah Y, Zhang M et al (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells, Nanomed Biotechnol 47:341–352. https://doi.org/10.1080/21691401.2018.1557671

    Article  Google Scholar 

  18. MohammadiArvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S (2019) A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Mater Sci Eng, C 97:397–405. https://doi.org/10.1016/j.msec.2018.12.058

    Article  Google Scholar 

  19. Rajeswari M, Agrawal P, Roopa GS, et al (2018) Green synthesis and characterization of multifunctional zinc oxide nanomaterials using extract of Moringa oleifera seed. Mater Today: Proc 5:20996–21002https://doi.org/10.1016/j.matpr.2018.06.491

  20. Abelson PH (1982) Chemical abstracts after 75 years. Science 217:7. https://doi.org/10.1126/science.217.4554.7

    Article  Google Scholar 

  21. Shanmugapriya K, Akanya S, AndersonClinton B, Berril NS (2017) Phytochemical screening of Artocarpus hirsutus and its antimicrobial potential. Asian J Pharma Clin Res 10:298–302. https://doi.org/10.22159/AJPCR.2017.V10I6.17669

    Article  Google Scholar 

  22. Nayak M, Nagarajan A, Majeed M, Mundkur LA (2017) Evaluation of in vitro antioxidant potential, anti-inflammatory activity and melanogenesis inhibition of Artocarpus hirsutus Lam. extracts. Int J Sci Technol Res 6:19–6203

    Google Scholar 

  23. Mohammed SSS, Lawrance AV, Sampath S, Sunderam V and Madhavan Y (2022) Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: spectral characterisation and its potential biological applications. Mater Technol 0:1–14. https://doi.org/10.1080/10667857.2020.1863571

  24. Dhanasekaran P, Satya Sai PM, AnandBabu C et al (2016) Arsenic removal from groundwater by Anjili tree sawdust impregnated with ferric hydroxide and activated alumina. Water Sci Technol: Water Supply 16:115–127. https://doi.org/10.2166/ws.2015.119

    Article  Google Scholar 

  25. Panáček A, Smékalová M, Večeřová R et al (2016) Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf, B 142:392–399. https://doi.org/10.1016/j.colsurfb.2016.03.007

    Article  Google Scholar 

  26. Davin-Regli A, Pagès JM (2015) Enterobacter aerogenes and Enterobacter cloacae; Versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.00392

    Article  Google Scholar 

  27. Thakur M, Asrani RK, Patial V (2018) Listeria monocytogenes : a food-borne pathogen. Elsevier Inc

    Google Scholar 

  28. Acharya D, Satapathy S, Somu P, Parida UK, Mishra G (2020) Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02304-7

    Article  Google Scholar 

  29. Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim.J, (2017) Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225. https://doi.org/10.1016/j.arabjc.2016.01.011

    Article  Google Scholar 

  30. RahamanMollick MM, Bhowmick B, Mondal D, Maity D, Rana D, Dash SK, Chatoopadhyay S, Roy S, Sarakr J, Acharya K, Chakraborty M (2014) Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv 4:37838–37848. https://doi.org/10.1039/c4ra07285e

    Article  Google Scholar 

  31. Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. BioinorgChem Appl 2018. https://doi.org/10.1155/2018/1062562

  32. Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:1–10. https://doi.org/10.1186/s12951-014-0028-6

    Article  Google Scholar 

  33. Arumugam M, Manikandan DB, Dhandapani E, Sridhar A, Balakrishnan K, Markandan M, Ramasamy T (2021) Green synthesis of zinc oxide nanoparticles (ZnO NPs) using Syzygium cumini: potential multifaceted applications on antioxidants, cytotoxic and as nanonutrient for the growth of Sesamum indicum. Environ Technol Innov 23:101653. https://doi.org/10.1016/j.eti.2021.101653

    Article  Google Scholar 

  34. Saqib S, Nazeer A, Ali M, Zaman W, Younas M, Shahzad A, Nisar M (2022) Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. Biometals 35:967–985. https://doi.org/10.1007/s10534-022-00417-1

    Article  Google Scholar 

  35. Gur T, Meydan I, Seckin H, Bekmezci M and Sen F (2022) Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ Res 204. https://doi.org/10.1016/j.envres.2021.111897

  36. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2014) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003. https://doi.org/10.1039/C4RA12784F

    Article  Google Scholar 

  37. Veena S, Devasena T, Sathak SSM, Yasasve M, Vishal LA (2019) Green synthesis of gold nanoparticles from Vitex negundo leaf extract: characterization and in vitro evaluation of antioxidant–antibacterial activity. J Clust Sci 30:1591–1597. https://doi.org/10.1007/s10876-019-01601-z

    Article  Google Scholar 

  38. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  Google Scholar 

  39. Al-Madi EM, Almohaimede AA, Al-Obaida MI, Awaad AS (2019) Comparison of the antibacterial efficacy of Commiphora molmol and sodium hypochlorite as root canal irrigants against Enterococcus faecalis and Fusobacterium nucleatum. Evid-Based Complement Altern Med 2019:e6916795. https://doi.org/10.1155/2019/6916795

    Article  Google Scholar 

  40. Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5:11033. https://doi.org/10.1038/srep11033

    Article  Google Scholar 

  41. Stevens JJ, Graham-Evans B, Walker AM, Armstead B, Tchounwou PB (2008) Cytotoxic effect of arsenic trioxide in adenocarcinoma colorectal cancer (HT-29) cells. Met Ions Biol Med 10:458–462

    Google Scholar 

  42. Manojj D, Yasasve M, Kanmani K, Sai Ramesh A (2020) In vitro cytotoxicity study and anti-Brucella activity of Tarenna asiatica (L). S Afr J Bot 128:54–61. https://doi.org/10.1016/j.sajb.2019.09.021

    Article  Google Scholar 

  43. Sunderam V, Mohammed SSS, Madhavan Y, DhinakaranM SS, Patteswaran N, Thangavelu L, Lawrence AV (2020) Free radical scavenging activity and cytotoxicity study of fermented oats (Avena sativa). Int J Res Pharm Sci 11:1259–1262

    Article  Google Scholar 

  44. Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn HG, Erdmann H (2014) Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28:1280–1289. https://doi.org/10.1016/j.tiv.2014.06.005

    Article  Google Scholar 

  45. Thangam R, Sathuvan M, Poongodi A, Suresh V, Pazhanichamy K, Sivasubramanian S, Kanipandian N, Ganesan N, Rengasamy R, Thirumurugan R, Kannan S (2014) Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions. Carbohydr Polym 107:138–150. https://doi.org/10.1016/j.carbpol.2014.02.039

    Article  Google Scholar 

  46. BoroumandMoghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, Mohamad R (2017) Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel) 8:E281. https://doi.org/10.3390/genes8100281

    Article  Google Scholar 

  47. Li J, Wang Y, Zhang C-G, Xiao HJ, Hou JM, He JD (2018) Effect of long non-coding RNA Gas5 on proliferation, migration, invasion and apoptosis of colorectal cancer HT-29 cell line. Cancer Cell Int 18:4. https://doi.org/10.1186/s12935-017-0478-7

    Article  Google Scholar 

  48. Meis JE, Khanna A (2009) RNA amplification and cDNA synthesis for qRT-PCR directly from a single cell. Nat Methods 6:an12–an13. https://doi.org/10.1038/nmeth.f.280

    Article  Google Scholar 

  49. Strati A, Markou A, Parisi C, Politaki E, Mavroudis D, Georgoulias V, Lianidou E (2011) Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer 11:422. https://doi.org/10.1186/1471-2407-11-422

    Article  Google Scholar 

  50. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  Google Scholar 

  51. Srividya N, Chandra M (2015) Evaluation of bioactive compounds and antioxidant activity of some wild fruits and some in=vitro assays. Int J Pharm Sci Res 6:233–238. https://doi.org/10.13040/IJPSR.0975-8232.6(1).233-38

  52. Vinay Suvarna MN, Venkatachalapathy R, MakariHanumanthappa K, Ramesh BS (2014) Phytochemical analysis and antimicrobial activity of Artocarpus hirsutus: an in vitro study. International J Pharm Bio Sciences 5

  53. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Spectrochimica Acta Part A : molecular and biomolecular spectroscopy green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 136:864–870. https://doi.org/10.1016/j.saa.2014.09.105

    Article  Google Scholar 

  54. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003. https://doi.org/10.1039/C4RA12784F

    Article  Google Scholar 

  55. Kannan NSJC, Satheeskumar S (2015) Examination of antibacterial properties of pure and aluminum doped zinc oxide nanoparticles. Int J ChemTech Res 7:1708–1712

  56. Raj LFAA, Jayalakshmy E (2015) A biogenic approach for the synthesis and characterization of zinc oxide nanoparticles produced by Tinospora cordifolia. Int J Pharm Pharm Sci 7:384–386

  57. Ramesh PS, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta - Part A: Mol Biomol Spectrosc 142:339–343. https://doi.org/10.1016/j.saa.2015.01.062

    Article  Google Scholar 

  58. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (Zno) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465

  59. Raut S, Thorat P V, Thakre R (2015) Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. Int J Sci Res 4:2013–2016

  60. Darroudi M, Sabouri Z, Kazemi R, Khorsand A (2013) Sol – gel synthesis , characterization , and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram Int 1–5. https://doi.org/10.1016/j.ceramint.2013.05.021

  61. Theivasanthi T, Venkadamanickam G, Palanivelu M, Alagar M (2011) Nano sized powder of jackfruit seed: spectroscopic and anti-microbial investigative approach. Nano Biomed Eng 3. https://doi.org/10.5101/nbe.v3i4.p215-221

  62. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod 46:132–137. https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  Google Scholar 

  63. Reddy LS, Nisha MM, Joice M, Shilpa PN (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol 52:1388–1397. https://doi.org/10.3109/13880209.2014.893001

    Article  Google Scholar 

  64. Wang C, Liu L, Zhang A-T, Xie P, Lu JJ and Zou XT (2012) Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. https://doi.org/10.5897/AJB11.3703

  65. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, Oneill AJ, York DW (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12:1625–1636. https://doi.org/10.1007/s11051-009-9711-1

    Article  Google Scholar 

  66. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine: Nanotechnology. Biol Med 10:1195–1208. https://doi.org/10.1016/j.nano.2014.02.012

    Article  Google Scholar 

  67. Wang S, Wu J, Yang H, Liu X, Huang Q, Lu Z (2017) Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen Streptococcus mutans. J Mater Sci - Mater Med 28:1–8. https://doi.org/10.1007/s10856-016-5837-8

    Article  Google Scholar 

  68. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog. https://doi.org/10.1016/j.micpath.2017.12.039

    Article  Google Scholar 

  69. Soni D, Gandhi D, Tarale P, Bafana A, Pandey RA, Sivanesan S (2017) Oxidative stress and genotoxicity of zinc oxide nanoparticles to pseudomonas species, human promyelocytic leukemic (HL-60), and blood cells. Biol Trace Elem Res 178:218–227. https://doi.org/10.1007/s12011-016-0921-y

    Article  Google Scholar 

  70. Ng CT, Yong LQ, Hande MP, Ong CN, Le Yu, Bay BH, Baeg GH (2017) Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed 12:1621–1637. https://doi.org/10.2147/IJN.S124403

    Article  Google Scholar 

  71. Mani S, Balasubramanian MG, Ponnusamy P, Vijayan P (2019) Antineoplastic effect of PAC capped silver nanoparticles promote apoptosis in HT-29 human colon cancer cells. J Cluster Sci 30:483–493. https://doi.org/10.1007/s10876-019-01510-1

    Article  Google Scholar 

  72. Mousavi B, Tafvizi F, ZakerBostanabad S (2018) Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells, Nanomed Biotechnol 46:499–510. https://doi.org/10.1080/21691401.2018.1430697

    Article  Google Scholar 

  73. Boskabadi SH, Balanezhad SZ, Neamati A, Tabrizi MH (2020) The green-synthesized zinc oxide nanoparticle as a novel natural apoptosis inducer in human breast (MCF7 and MDA-MB231) and colon (HT-29) cancer cells. Inorg Nano-Metal Chem 51:733–743. https://doi.org/10.1080/24701556.2020.1808991

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of Sree Sastha Institute of Engineering and Technology, Chennai, Tamil Nadu, India, for providing the laboratory facilities to complete the research work successfully.

Author information

Authors and Affiliations

Authors

Contributions

S. Sampath: data collection, investigation, writing (original draft preparation). V. Sundaram: investigation, writing (review and editing). S. S. Shaik Mohammed: investigation, validation, resources. Y. Madhavan: investigation, writing (original draft preparation). S. Muthupandian: supervision, formal analysis, resources. A. V. Lawrance: conceptualization, investigation, supervision, writing (review and editing).

Corresponding author

Correspondence to Ansel Vishal Lawrance.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals.

Consent to participate

All authors agree mutually with the participation to this work and declare that this is original research.

Consent for publication

All authors read and approved the final manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, S., Sunderam, V., Madhavan, Y. et al. Facile green synthesis of zinc oxide nanoparticles using Artocarpus hirsutus seed extract: spectral characterization and in vitro evaluation of their potential antibacterial-anticancer activity. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04127-7

Keywords

Navigation