Skip to main content

Advertisement

Log in

In silico optimization of anthocyanin extraction from gladious flower extracts and evaluation of its antioxidant potential

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Gladiolus (Gladiolus grandiflora Hort.) is one of the important horticultural crops belonging to Iridaceae family. It grows in flowerbeds, borders, and containers and has immense potential as cut flowers. In this study, we have optimized the anthocyanin extraction from gladiolus Pusa Suahagin (PS) flower using one-variable-at-a-time (OVAT) and response surface methodology (RSM) methods. The optimum conditions for maximum anthocyanin content of 40.45 g−1 DW was obtained considering the water:hydrochloride (1.8:0.6) ratio, temperature: 52.72 °C, time: 2 h and solid loading: 7% (w/v). MS studies confirmed the presence of pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and malvidin compounds in PS flower extract. Free radical scavenging capability determined by DPPH assay of PS flower extract showed 84.63%, which implies that the PS flower extract can be used as colorant or nutraceutical in food industry and potential agent for enhancement of vase life pertinent to cut flowers in flower industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin WS, He PH, Chau CF, Liou BK, Li S, Pan MH (2018) The feasibility study of natural pigments as food colorants and seasonings pigments safety on dried tofu coloring. Food Sci Hum Wellness 7:220–228. https://doi.org/10.1016/j.fshw.2018.09.002

    Article  Google Scholar 

  2. Aziz N, Mat Nor NA, Arof AK (2020) Optimization of anthocyanin extraction parameters from M. malabathricum via response surface methodology to produce natural sensitizer for dye sensitized solar cells. Opt Quantum Electron 52(1):1–13. https://doi.org/10.1007/s11082-019-2139-7

    Article  Google Scholar 

  3. Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6:7. https://doi.org/10.3389/fnut.2019.00007

    Article  Google Scholar 

  4. Pham TN, Nguyen DC, Lam TD, Van Thinh P, Le XT, Quang HV, Nguyen TD, Bach LG (2019) Extraction of anthocyanins from Butterfly pea (Clitoria ternatea L. Flowers) in Southern Vietnam: response surface modeling for optimization of the operation conditions. In IOP Conference Series: Mater Sci Eng 542(1): 012032. https://iopscience.iop.org/article/10.1088/1757-899X/542/1/012032/meta

  5. Gençdağ E, Özdemir EE, Demirci K, Görgüç A, Yılmaz FM (2022) Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr Plant Biol 29:100238. https://doi.org/10.1016/j.cpb.2022.100238

    Article  Google Scholar 

  6. Dilrukshi PGT, Munasinghe H, Silva ABG, De Silva PGSM (2019) Identification of synthetic food colours in selected confectioneries and beverages in Jaffna district. Sri Lanka J Food Qual 2019:453169. https://doi.org/10.1155/2019/7453169

    Article  Google Scholar 

  7. Shivani M, Prathibha S, Kavya Sri B, Chintagunta AD, Sampath NS, Jeevan Kumar SP, Kumar NSV, Dirisala VR (2020) Extraction of natural dye from and its bougainvillea glabra applications in food industries. Indian J Ecol 47(11):207–211

    Google Scholar 

  8. Jaafar NF, Ramli ME, Salleh RM (2020) Optimum extraction condition of Clitorea ternatea flower on antioxidant activities, total phenolic, total flavonoid and total anthocyanin contents. Trop Life Sci Res 31(2):1

    Article  Google Scholar 

  9. Feketea G, Tsabouri S (2017) Common food colorants and allergic reactions in children: myth or reality? Food Chem 230:578–588. https://doi.org/10.1016/j.foodchem.2017.03.043

    Article  Google Scholar 

  10. Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM (2020) pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 105:93–144. https://doi.org/10.1016/j.tifs.2020.08.014

    Article  Google Scholar 

  11. Mattioli R, Francioso A, Mosca L, Silva P (2020) Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25(17):3809. https://doi.org/10.3390/molecules25173809

    Article  Google Scholar 

  12. Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A (2021) Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 20(4):3164–3191. https://doi.org/10.1111/1541-4337.12772

    Article  Google Scholar 

  13. Akhmadieva AK, Zaichkina SI, Ruzieva RK, Ganassi EE (1993) The protective action of a natural preparation of anthocyanin (Pelargonidin-3,5-diglucoside). Radiobiologiia 33:433–435

    Google Scholar 

  14. Colantuoni A, Bertugli S, Magistretti MJ, Donato L (1991) Effects of Vaccinium myrtillus anthocyanosides on arterial vasomotion. Arzneim-Forsch 41:905–909

    Google Scholar 

  15. Lietti A, Cristoni A, Picci M (1976) Studies on Vacciniummyrtillus anthocyanosides I Vasoprotective and anti-inflammatory activity. Aezneim-Forsch 26:829–832

    Google Scholar 

  16. Kame H, Kojima T, Hasegawa M, Koide T, Umeda T, Yukawa T, Terade K (1995) Suppression of tumor cell growth by anthocyanins in vitro. Cancer Invest 13:590–594

    Article  Google Scholar 

  17. Mitcheva M, Astroug H, Drenska D, Popov A, Kassarova M (1993) Biochemical and morphological studies on anthocyans and vitamin E on carbon tetrachloride induced liver injury. Cell Mol Biol 39:443–448

    Google Scholar 

  18. Karaivanova M, Drenska D, Ovcharov RA (1990) Modification of the toxic effects of platinum complexes with anthocyans. Eksp Med Morfol 29:19–24

    Google Scholar 

  19. Castañeda-Ovando A, de Lourdes P-H, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food chem 113(4):859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

    Article  Google Scholar 

  20. Grajeda-Iglesias C, Figueroa-Espinoza MC, Barouh N, Baréa B, Fernandes A, de Freitas V, Salas E (2016) Isolation and characterization of anthocyanins from Hibiscus sabdariffa flowers. J Nat Prod 79(7):1709–1718. https://doi.org/10.1021/acs.jnatprod.5b00958

    Article  Google Scholar 

  21. Lim TK (2014) Gladiolus grandiflorus. In edible medicinal and non medicinal plants (pp. 144–150). Springer, Dordrech

  22. Kim YB, Park SY, Park CH, Park WT, Kim SJ, Ha SH, Arasu MV, Al-Dhabi NA, Kim JK, Park SU (2016) Metabolomics of differently colored gladiolus cultivars. Appl Biol Chem 59(4):597–607. https://doi.org/10.1007/s13765-016-0197-0

    Article  Google Scholar 

  23. Islam S (2016) Anthocyanin compositions in different colored gladiolus species: a source of natural food colorants. Am J Food Technol 4(4):109–114. http://pubs.sciepub.com/ajfst/4/4/4. Accessed 21 Sep 2022

  24. Fernandes L, Casal SI, Pereira JA, Ramalhosa E, Saraiva JA (2017) Optimization of high pressure bioactive compounds extraction from pansies (Viola× wittrockiana) by response surface methodology. High Press Res 37(3):415–429. https://doi.org/10.1080/08957959.2017.1347925

    Article  Google Scholar 

  25. Souza AGD, Jung EA, Benedicto VP, Bosco LC (2021) Bioactive compounds in gladiolus flowers. Ornam Hortic 27:296–303. https://doi.org/10.1590/2447-536X.v27i3.2310

    Article  Google Scholar 

  26. Cissé M, Bohuon P, Sambe F, Kane C, Sakho M, Dornier M (2012) Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. J Food Eng 109(1):16–21. https://doi.org/10.1016/j.jfoodeng.2011.10.012

    Article  Google Scholar 

  27. Maciel LG, do Carmo MAV, Azevedo L, Daguer H, Molognoni L, de Almeida MM, Granato D, Rosso ND (2018) Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem Toxicol 113:187–197

    Article  Google Scholar 

  28. Khazaei KM, Jafari SM, Ghorbani M, Kakhki AH, Sarfarazi M (2015) Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Anal Methods 9(7):1993–2001. https://doi.org/10.1007/s12161-015-0375-4

    Article  Google Scholar 

  29. Kumar SPJ, Garlapati VK, Lohit Kumar Srinivas G, Banerjee R (2021) Bioconversion of waste glycerol for enhanced lipid accumulation in Trichosporon shinodae. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01799-x

  30. Kumar SPJ, Garlapati VK, Banerjee R (2022) Enzymatic biodiesel synthesis from Trichosporon shinodae yeast through circular economy: a greener approach. Fuel 325:124595. https://doi.org/10.1016/j.fuel.2022.124595

    Article  Google Scholar 

  31. Harborne JB (1984) Methods of plant analysis. In phytochemical methods (pp. 1–36). Springer, Dordrecht

  32. Shimizu T, Nakamura M (1993) Purple sweet potato color. P. 224–225. In: M. Fuji (ed.). Natural food colorants. Kohrin Corp., Tokyo, Japan

  33. Hodgman CD (1954) Handbook of chemistry and physics. 36th ed. P. 1617. Chemical Rubber Publ, Co., Cleveland, Ohio., USA, p. 1617

  34. Shimizu T, Nakamura M (1993) Anthocyanins. In: Fujii M (ed) Gaisetu Shokuyou Tennennshikiso. Korin, Tokyo, pp 71–104

  35. Saha S, Singh J, Paul A, Sarkar R, Khan Z, Banerjee K (2020) Anthocyanin profiling using uv-vis spectroscopy and liquid chromatography mass spectrometry. J AOAC Int 103(1):23–39

    Article  Google Scholar 

  36. Sarkar R, Kundu A, Banerjee K, Saha S (2018) Anthocyanin composition and potential bioactivity of karonda (Carissa carandas L.) fruit: An Indian source of biocolorant. LWT 93:673–678

    Article  Google Scholar 

  37. Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43(1):27–32. https://doi.org/10.1021/jf00049a007

    Article  Google Scholar 

  38. Shaheena S, Chintagunta AD, Dirisala VR, Sampath Kumar NS (2019) Extraction of bioactive compounds from Psidium guajava and their application in dentistry. AMB Express 9(1):1–9

    Article  Google Scholar 

  39. Tan J, Han Y, Han B, Qi X, Cai X, Ge S, Xue H (2022) Extraction and purification of anthocyanins: A review. J Agric Res 9:100306. https://doi.org/10.1016/j.jafr.2022.100306

    Article  Google Scholar 

  40. Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054(1–2):95–111. https://doi.org/10.1016/j.chroma.2004.08.059

    Article  Google Scholar 

  41. Zhang MW, Guo BJ, Zhang RF, Chi JW, Wei ZC, Xu ZH, Zhang Y, Tang XJ (2006) Separation, purification and identification of antioxidant compositions in black rice. Agric Sci China 5(6):431–440

    Article  Google Scholar 

  42. Patras A, Brunton NP, O’Donnell C, Tiwari BK (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21(1):3–11. https://doi.org/10.1016/j.tifs.2009.07.004

    Article  Google Scholar 

  43. Pedro AC, Granato D, Rosso ND (2016) Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chem 191:12–20. https://doi.org/10.1016/j.foodchem.2015.02.045

    Article  Google Scholar 

  44. Zhang L, Fu Q, Zhang Y (2011) Composition of anthocyanins in pomegranate flowers and their antioxidant activity. Food Chem 127(4):1444–1449. https://doi.org/10.1016/j.foodchem.2011.01.077

    Article  Google Scholar 

  45. Iwashina T (2015) Contribution to flower colors of flavonoids including anthocyanins: a review. Nat Prod Commun 10(3):529–544. https://doi.org/10.1177/1934578X1501000335

    Article  Google Scholar 

  46. Owoade AO, Lowe GM, Khalid R (2015) The in vitro antioxidant properties of Hibiscus anthocyanins rich extract (HAE). Nat Sci 13(3):22–29

    Google Scholar 

  47. Sindi HA, Marshall LJ, Morgan MR (2014) Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem 164:23–29. https://doi.org/10.1016/j.foodchem.2014.04.097

    Article  Google Scholar 

  48. Li W, Gu M, Gong P, Wang J, Hu Y, Hu Y, Tan X, Wei J, Yang H (2021) Glycosides changed the stability and antioxidant activity of pelargonidin. LWT- Food Sci Technol 147:111581

    Article  Google Scholar 

  49. Li H, Zhang C, Deng Z, Zhang B, Li H (2022) Antioxidant activity of delphinidin and pelargonidin: theory and practice. J Food Biochem 46:e14192. https://doi.org/10.1111/jfbc.14192

  50. Fernández-Arroyo S, Rodríguez-Medina CI, Beltrán-Debón R, Pasini F, Joven J, Micol V, Segura-Carretero A, Fernández-Gutiérrez A (2011) Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res Int 44(5):1490–1495

    Article  Google Scholar 

  51. Baskaran A, Mudalib SK, Izirwan I (2019) Optimization of aqueous extraction of blue dye from butterfly pea flower. In J Phys: Conf Series 1358(1):012001

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, ICAR-Directorate of Floricultural Research, Pune for facilitating the research work.

Author information

Authors and Affiliations

Authors

Contributions

ADC conducted experiments and evaluated results, NSSK reviewed literature and analyzed the data, JK conducted the experiments, GBK cultivated the PS flower and supplied the flowers on time, PNK meticulously edited the paper, AS and NS conducted MS studies and analyzed the data of flower sample, KVP meticulously edited the MS and SPJK conceived the idea, analyzed, the data and drafted the paper.

Corresponding author

Correspondence to S. P. Jeevan Kumar.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 247 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chintagunta, A.D., Kumar, N.S.S., Kolla, J. et al. In silico optimization of anthocyanin extraction from gladious flower extracts and evaluation of its antioxidant potential. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03653-0

Keywords

Navigation