Skip to main content

Advertisement

Log in

Efficient fractionation of biomass by acid deep eutectic solvent (DES) and rapid preparation of lignin nanoparticles

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Efficient fractionation and valorization of biomass major components are important for biomass utilization. Deep eutectic solvent (DES) treatment is a promising method for biomass processing. In this study, a choline chloride oxalic acid dihydrate (ChCl-OA) DES treatment method was developed to efficiently separates biomass components and isolate the lignin from bamboo. Hemicellulose (from 16.2 to 3.2%) and lignin (from 27.4 to 4.9%) components in recovery solid were significantly reduced. Results revealed that the DES-extracted lignin (DESL) had a higher yield (82.1%) and purity (94.9%), but a lower molecular weight (1148 g/mol) compared with the milling wood lignin (MWL) and alkali lignin (AL). Meanwhile, the DESL from the acid DES pretreatment of bamboo biomass was beneficial to the preparation of stable and homogenous lignin nanoparticles (LNPs). This study provides an efficient method to separate the main components of biomass and prepare LNPs. The DES treatment showed great potential for biomass component fractionation and lignin valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Feng S, Xinni X, Junyan F et al (2020) Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renew Sust Energ Rev 130:109944. https://doi.org/10.1016/j.rser.2020.109944

    Article  Google Scholar 

  2. Can W, Xi C, Man Q et al (2019) Room temperature, near-quantitative conversion of glucose into formic acid. Green Chem 21:6089–6096. https://doi.org/10.1039/C9GC02201E

    Article  Google Scholar 

  3. Baral NR, Sundstrom ER, Das L et al (2019) Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. Acs Sustain Chem Eng 7:9062–9079. https://doi.org/10.1021/acssuschemeng.9b01229

    Article  Google Scholar 

  4. Xu L, Zhang SJ, Zhong C et al (2020) Alkali-based pretreatment-facilitated lignin valorization: a review. Ind Eng Chem Res 59:16923–16938. https://doi.org/10.1021/acs.iecr.0c01456

    Article  Google Scholar 

  5. Liu CQ, Liu MJ, Wang P et al (2020) Effect of steam-assisted alkaline pretreatment plus enzymolysis on converting corn stalk into reducing sugar. Renew Energ 159:982–990. https://doi.org/10.1016/j.renene.2020.06.084

    Article  Google Scholar 

  6. Sun R (2020) Lignin source and structural characterization. Chemsuschem 13:4385–4393. https://doi.org/10.1002/cssc.202001324

    Article  Google Scholar 

  7. Yuan TQ, Xu F, Sun RC (2012) Role of lignin in a biorefinery: separation characterization and valorization. J Chem Technol Biotechnol 88(3):346–352. https://doi.org/10.1002/jctb.3996

    Article  Google Scholar 

  8. Song Y, Wei J, Zhang Y et al (2018) Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment. Cellulose 25:4979–4992. https://doi.org/10.1007/s10570-018-1916-y

    Article  Google Scholar 

  9. Yang WS, Yang J, Du X et al (2021) Efficient valorization of woody biomass using two-step oxidation toward multipurpose fractionation. Ind Crop Prod 167:113509. https://doi.org/10.1016/j.indcrop.2021.113509

    Article  Google Scholar 

  10. Yang X, Yang J, Wang Y et al (2022) Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Appl Catal B-Environ 300:120716. https://doi.org/10.1016/j.apcatb.2021.120716

    Article  Google Scholar 

  11. Wei L, Ruijie W, Yingying H et al (2020) Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment. Bioresource Technol 316:123920. https://doi.org/10.1016/j.biortech.2020.123920

    Article  Google Scholar 

  12. Grillo G, Gaudino EC, Rosa R et al (2021) Green deep eutectic solvents for microwave-assisted biomass delignification and valorisation. Molecules 26:798. https://doi.org/10.3390/molecules26040798

    Article  Google Scholar 

  13. Nie K, Liu B, Zhao T et al (2020) A facile degumming method of kenaf fibers using deep eutectic solution. J Nat Fibers 19(3):1115–1125. https://doi.org/10.1080/15440478.2020.1795778

    Article  Google Scholar 

  14. Wang WX, Zhu YS, Du J et al (2015) Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses. Bioresour Technol 181:7–12. https://doi.org/10.1016/j.biortech.2015.01.026

    Article  Google Scholar 

  15. Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70-71.https://doi.org/10.1039/B210714G

  16. Kumar S, Sharma S, Arumugam SM et al (2020) Biphasic separation approach in the DES biomass fractionation facilitates lignin recovery for subsequent valorization to phenolics. Acs Sustain Chem Eng 8:19140–19154. https://doi.org/10.1021/acssuschemeng.0c07747

    Article  Google Scholar 

  17. Liu Y, Chen W, Xia Q et al (2017) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. Chemsuschem 10:1692–1700. https://doi.org/10.1002/cssc.201601795

    Article  Google Scholar 

  18. Wang YX, Meng XZ, Jeong K et al (2020) Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion. Acs Sustain Chem Eng 8:12542–12553. https://doi.org/10.1021/acssuschemeng.0c03533

    Article  Google Scholar 

  19. Xiao-Jun S, Tianying C, Han-Min W et al (2020) Structural and morphological transformations of lignin macromolecules during bio-based deep eutectic solvent (DES) pretreatment. Acs Sustain Chem Eng 8(5):2130–2137. https://doi.org/10.1021/acssuschemeng.9b05106

    Article  Google Scholar 

  20. Chen Y, Mu TC (2019) Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy Environ 4:95–115. https://doi.org/10.1016/j.gee.2019.01.012

    Article  Google Scholar 

  21. Satlewal A, Agrawal R, Bhagia S et al (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36:2032–2050. https://doi.org/10.1016/j.biotechadv.2018.08.009

    Article  Google Scholar 

  22. Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026

    Article  Google Scholar 

  23. Vigier KDO, Chatel G, Jérôme F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260. https://doi.org/10.1002/cctc.201500134

    Article  Google Scholar 

  24. Chen Z, Ragauskas A, Wan CX (2020) Lignin extraction and upgrading using deep eutectic solvents. Ind Crops Prod 147.https://doi.org/10.1016/j.indcrop.2020.112241

  25. Lee KM, Hong JY, Tey WY (2021) Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification. Cellulose 28:1513–1526. https://doi.org/10.1007/s10570-020-03598-5

    Article  Google Scholar 

  26. Junxian X, Junjun C, Zheng C et al (2021) Pretreatment of pine lignocelluloses by recyclable deep eutectic solvent for elevated enzymatic saccharification and lignin nanoparticles extraction. Carbohyd Polym 269:118321. https://doi.org/10.1016/j.carbpol.2021.118321

    Article  Google Scholar 

  27. Shen XJ, Wen JL, Mei QQ et al (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283. https://doi.org/10.1039/C8GC03064B

    Article  Google Scholar 

  28. Istasse T, Lemaur V, Debroux G (2020) Monosaccharides dehydration assisted by formation of borate esters of α-hydroxyacids in choline chloride-based low melting mixtures. Front Chem 8:569. https://doi.org/10.3389/fchem.2020.00569

    Article  Google Scholar 

  29. Li TF, Lyu GJ, Liu Y et al (2017) Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu). Int J Mol Sci 18(11):2266. https://doi.org/10.3390/ijms18112266

    Article  Google Scholar 

  30. Jiang J, Carrillo-Enríquez NC, Oguzlu H et al (2020) High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. Acs Sustain Chem Eng 8:7182–7191. https://doi.org/10.1021/acssuschemeng.0c01724

    Article  Google Scholar 

  31. Jungang J, Nancy CCE, Hale O et al (2020) Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohyd Polym 247:116727. https://doi.org/10.1016/j.carbpol.2020.116727

    Article  Google Scholar 

  32. Wang J, Chen W, Dong T et al (2021) Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem 23:10062–10070. https://doi.org/10.1039/D1GC03906G

    Article  Google Scholar 

  33. Wang X, Zhu Y, Wang X et al (2020) In-situ growth of graphene on carbon nanofiber from lignin. Carbon 169:446–454. https://doi.org/10.1016/j.carbon.2020.07.070

    Article  Google Scholar 

  34. Chen J, Fan X, Zhang L et al (2020) Research progress in lignin-based slow/controlled release fertilizer. Chemsuschem 13(17):4356–4366. https://doi.org/10.1002/cssc.202000455

    Article  Google Scholar 

  35. Chen XJ, Li ZH et al (2021) Preparation of a novel lignin-based film with high solid content and its physicochemical characteristics. Ind Crops Prod 164:113396. https://doi.org/10.1016/j.indcrop.2021.113396

    Article  Google Scholar 

  36. Ahvazi B, Cloutier E, Wojciechowicz O et al (2016) Lignin profiling: a guide for selecting appropriate lignin as precursors in biomaterials development. Acs Sustain Chem Eng 4(10):5090–5105. https://doi.org/10.1021/acssuschemeng.6b00873

    Article  Google Scholar 

  37. Dong T, Jinguang H, Jie B et al (2017) Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels 10:192. https://doi.org/10.1186/s13068-017-0876-z

    Article  Google Scholar 

  38. Rui L, Ruoshui M, Kuan-ting L et al (2019) Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles. Acs Sustain Chem Eng 7:10248–10256. https://doi.org/10.1021/acssuschemeng.8b05816

    Article  Google Scholar 

  39. Tong L, Chao W, Xingxiang J et al (2021) Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites. J Biol Macromol 182:781–789. https://doi.org/10.1016/j.ijbiomac.2021.05.005

    Article  Google Scholar 

  40. Chen X, Guo T, Yang H et al (2022) Environmentally friendly preparation of lignin/paraffin/epoxy resin composite-coated urea and evaluation for nitrogen efficiency in lettuce. Int J Biol Macromol 221:1130–1141. https://doi.org/10.1016/j.ijbiomac.2022.09.112

    Article  Google Scholar 

  41. Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  Google Scholar 

  42. Ai BL, Li WQ, Woomer J et al (2020) Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass. Green Chem 22:6372–6383. https://doi.org/10.1039/D0GC01560A

    Article  Google Scholar 

  43. Lv W, Xia Z, Song Y et al (2021) Using microwave assisted organic acid treatment to separate cellulose fiber and lignin from kenaf bast. Ind Crop Prod 171:113934. https://doi.org/10.1016/j.indcrop.2021.113934

    Article  Google Scholar 

  44. Zhong L, Xu MM, Wang C et al (2020) Pretreatment of willow using the alkaline-catalyzed sulfolane/water solution for high-purity and antioxidative lignin production. Int J Biol Macromol 159:287–294. https://doi.org/10.1016/j.ijbiomac.2020.05.074

    Article  Google Scholar 

  45. Zou T, Sipponen MH, Henn A et al (2021) Solvent-resistant lignin-epoxy hybrid nanoparticles for covalent surface modification and high-strength particulate adhesives. ACS Nano 15:4811–4823. https://doi.org/10.1021/acsnano.0c09500

    Article  Google Scholar 

  46. Qian G, Chengfeng Z, Kai N et al (2021) Relationship between Fiber Fineness and Diameter of Three Bast Fibers. J Nat Fibers 1-8.https://doi.org/10.1080/15440478.2021.1877233

  47. Ayeni AO, Daramola MO, Sekoai PT et al (2018) Statistical modelling and optimization of alkaline peroxide oxidation pretreatment process on rice husk cellulosic biomass to enhance enzymatic convertibility and fermentation to ethanol. Cellulose 25:2487–2504. https://doi.org/10.1007/s10570-018-1714-6

    Article  Google Scholar 

  48. Chuanhe L, Shaoyang L, Yan S et al (2020) A facile and eco-friendly method to extract Apocynum venetum fibers using microwave-assisted ultrasonic degumming. Ind Crop Prod 151:112443. https://doi.org/10.1016/j.indcrop.2020.112443

    Article  Google Scholar 

  49. Loow YL, Wu TY, Yang GH, Teoh WH et al (2018) Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresource Technol 249:818–825. https://doi.org/10.1016/j.biortech.2017.07.165

    Article  Google Scholar 

  50. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  51. Yan S, Nie K, Wei J et al (2019) Utilization of deep eutectic solvent as a degumming protocol for Apocynum venetum bast. Cellulose 26:8047–8057. https://doi.org/10.1007/s10570-019-02654-z

    Article  Google Scholar 

  52. Fengpei Y, Dong T, Fei S et al (2018) Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol. Bioresource Technol 275:19–26. https://doi.org/10.1016/j.biortech.2018.12.040

    Article  Google Scholar 

  53. Wang X, Wang M, Liu G et al (2021) Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation. Nano Energy 86:106122. https://doi.org/10.1016/j.nanoen.2021.106122

    Article  Google Scholar 

  54. Yang X, Ben H, Ragauskas AJ (2021) Recent advances in the synthesis of deuterium-labeled compounds. Asian J Org Chem 10:2473–2485. https://doi.org/10.1002/ajoc.202100381

    Article  Google Scholar 

  55. Xu LH, Ma CY, Zhang C et al (2022) Ultrafast fractionation of wild-type and CSE down-regulated poplars by microwave-assisted deep eutectic solvents (DES) for cellulose bioconversion enhancement and lignin nanoparticles fabrication. Ind Crop Prod 176:114275. https://doi.org/10.1016/j.indcrop.2021.114275

    Article  Google Scholar 

  56. Jia-Long W, Tong-Qi Y, Shao-Long S et al (2013) Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem 16:181–190. https://doi.org/10.1039/C3GC41752B

    Article  Google Scholar 

  57. Sun YC, Liu XN, Wang TT et al (2019) A green process for extraction of lignin by the microwave-assisted ionic liquid approach: toward biomass biorefinery and lignin characterization. Acs Sustain Chem Eng 7:13062–13072. https://doi.org/10.1021/acssuschemeng.9b02166

    Article  Google Scholar 

  58. Ibarra D, Chavez MI, Rencoret J et al (2007) Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage. Holzforschung 61:634–646. https://doi.org/10.1515/HF.2007.096

    Article  Google Scholar 

  59. Jia-Long W, Shao-Long S, Tong-Qi Y et al (2014) Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl Energ 121:1–9. https://doi.org/10.1016/j.apenergy.2014.02.001

    Article  Google Scholar 

  60. Zhang L, Gellerstedt G (2011) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn Reson Chem 45:37–45. https://doi.org/10.1002/mrc.1914

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51903131), Natural Science Foundation of Shandong Province (ZR2019QEM007 and ZR2020ME076), Key Research and Development Program of Shandong Province (2020CXGC011101), Science Research Foundation of Dezhou University (2021xjrc207), State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (ZKT16 and ZKT21) and Special Foundation of “Taishan Scholar” Construction Program (ts20190932).

Author information

Authors and Affiliations

Authors

Contributions

Kai Nie: writing — original draft. Yan Song, Wanwan Lv, Tao Zhao, Boya Li, and Linlin Li: writing — review and editing. Guangting Han: funding acquisition and supervision. Shaoyang Liu, Wei Jiang: supervision; writing — review, and editing.

Corresponding authors

Correspondence to Guangting Han or Wei Jiang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 836 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, K., Liu, S., Zhao, T. et al. Efficient fractionation of biomass by acid deep eutectic solvent (DES) and rapid preparation of lignin nanoparticles. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03496-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03496-9

Keywords

Navigation