Skip to main content
Log in

Predictive models enhance feedstock quality of corn stover via air classification

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Feedstock heterogeneity is a fundamental obstacle to cost-competitive biobased products. Agricultural products like corn stover have anatomical components that vary in their chemical composition, mechanical properties, structure, and response to chemical and biological treatments. A technique that can enrich streams in select anatomical fractions would allow a tailored deconstruction approach to increase overall process efficiency. Air classification can be leveraged for such refining; however, fundamental characterization and understanding of the particle properties that underly the physics of air classification are only modestly documented. Here, we determine fundamental particle properties including mass-to-area ratio, drag coefficient, and partition velocity that describe how anatomical tissues of corn stover behave during air classification. Mass-to-area ratios of anatomical tissues vary by nearly two orders of magnitude from 2.3 mg/mm2 for cob to 0.04 mg/mm2 for leaf. Drag coefficients of longer, fibrous materials (i.e., rind, husk, and sheath) are shown to correlate with particle area (p-value < 0.001) whereas granular tissues (i.e., cob, pith, and leaf) correlate better with mass-to-area ratio (p-values < 0.001). When compared to experimental observations, a simulated two-stage air classification and size reduction scenario predicts the overall partitioning of anatomical tissues within 15% for pith, husk, rind, and cob tissues. The model predicts an air-classified fraction preferentially enriched in cob (purity = 20%), rind (purity = 74%), and pith (purity = 4.5%) with a mass yield of 47%. Empirical relations for these properties can be used to predict the partitioning of corn stover during air classification based on anatomical type and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw data for area and mass of corn stover particles are provided with this manuscript.

References

  1. Sharma B, Larroche C, Dussap C-G (2020) Comprehensive assessment of 2G bioethanol production. Bioresour Technol 313:123630. https://doi.org/10.1016/j.biortech.2020.123630

    Article  Google Scholar 

  2. Zhao Y, Damgaard A, Christensen TH (2018) Bioethanol from corn stover – a review and technical assessment of alternative biotechnologies. Prog Energy Combust Sci 67:275–291. https://doi.org/10.1016/j.pecs.2018.03.004

    Article  Google Scholar 

  3. Langholtz M, Stokes B, Eaton L (2016) 2016 billion-ton report: advancing domestic resources for a thriving bioeconomy (executive summary). Ind Biotechnol 12:282–289. https://doi.org/10.1089/ind.2016.29051.doe

    Article  Google Scholar 

  4. Morrison TA, Jung HG, Buxton DR, Hatfield RD (1998) Cell-wall composition of maize internodes of varying maturity. Crop Sci 38:455–460. https://doi.org/10.2135/cropsci1998.0011183X003800020031x

  5. Duguid KB, Montross MD, Radtke CW, Crofcheck CL, Wendt LM, Shearer SA (2009) Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour Technol 100:5189–5195. https://doi.org/10.1016/j.biortech.2009.03.08

    Article  Google Scholar 

  6. Crofcheck CL, Montross MD (2004) Effect of corn stover fraction on glucose production using enzymatic hydrolysis. Trans ASAE 47:841–844. https://doi.org/10.13031/2013.16081

    Article  Google Scholar 

  7. Montross MD, Crofcheck CL (2004) Effect of stover fraction and storage method on glucose production during enzymatic hydrolysis. Bioresour Technol 92:269–274. https://doi.org/10.1016/j.biortech.2003.09.007

    Article  Google Scholar 

  8. Williams DL, Crowe JD, Ong RG, Hodge DB (2017) Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields. Bioresour Technol 245:242–249. https://doi.org/10.1016/j.biortech.2017.08.200

    Article  Google Scholar 

  9. Li M, Yan G, Bhalla A, Maldonado-Pereira L, Russell PR, Ding S-Y, Mullet JE, Hodge DB (2018) Physical fractionation of sweet sorghum and forage/energy sorghum for optimal processing in a biorefinery. Ind Crops Prod 124:607–616. https://doi.org/10.1016/j.indcrop.2018.07.002

    Article  Google Scholar 

  10. Sievers DA, Kuhn EM, Thompson VS, Yancey NA, Hoover AN, Resch MG, Wolfrum EJ (2020) Throughput, reliability, and yields of a pilot-scale conversion process for production of fermentable sugars from lignocellulosic biomass: a study on feedstock ash and moisture. ACS Sus Chem Eng 8:2008–2015. https://doi.org/10.1021/acssuschemeng.9b06550

    Article  Google Scholar 

  11. Emerson RM, Hernandez S, Williams CL, Lacey JA, Hartley DS (2018) Improving bioenergy feedstock quality of high moisture short rotation woody crops using air classification. Biomass Bioenergy 117:56–62. https://doi.org/10.1016/j.biombioe.2018.07.015

    Article  Google Scholar 

  12. Lacey JA, Aston JE, Westover TL, Cherry RS, Thompson DN (2015) Removal of introduced inorganic content from chipped forest residues via air classification. Fuel 160:265–273. https://doi.org/10.1016/j.fuel.2015.07.100

    Article  Google Scholar 

  13. Duke University (1993) Air classification theory and design for municipal solid waste processing - final report. Report number EGG-EP-10715. https://doi.org/10.2172/6526810

  14. Bartlett JD, Vesilind PA (1983) The effect of moisture on air classification of municipal solid waste. Waste Manage Res 1:347–357. https://doi.org/10.1016/0734-242X(83)90038-1

    Article  Google Scholar 

  15. Everett Jess W, Peirce JJ (1989) Variable injection active-pulse air classification. J Environ Eng 115:395–408. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:2(395)

    Article  Google Scholar 

  16. Peirce JJ, Vesilind PA, McNabb M (1983) Predicting air classifier performance. J Energy Eng 109:7–16. https://doi.org/10.1061/(ASCE)0733-9402(1983)109:1(7)

    Article  Google Scholar 

  17. Everett JW, Peirce JJ (1990) The development of pulsed flow air classification theory and design for municipal solid waste processing. Resour Conserv Recycl 4:185–202. https://doi.org/10.1016/0921-3449(90)90001-K

    Article  Google Scholar 

  18. Bootsma JA, Shanks BH (2005) Hydrolysis characteristics of tissue fractions resulting from mechanical separation of corn stover. Appl Biochem Biotechnol 125:27–39. https://doi.org/10.1385/ABAB:125:1:027

    Article  Google Scholar 

  19. Thompson VS, Lacey JA, Hartley D, Jindra MA, Aston JE, Thompson DN (2016) Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy. Fuel 180:497–505. https://doi.org/10.1016/j.fuel.2016.04.040

    Article  Google Scholar 

  20. Weiss ND, Farmer JD, Schell DJ (2010) Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresour Technol 101:674–678. https://doi.org/10.1016/j.biortech.2009.08.082

    Article  Google Scholar 

  21. Lacey JA, Emerson RM, Thompson DN, Westover TL (2016) Ash reduction strategies in corn stover facilitated by anatomical and size fractionation. Biomass Bioenergy 90:173–180. https://doi.org/10.1016/j.biombioe.2016.04.006

    Article  Google Scholar 

  22. Li Z, Zhai H, Zhang Y, Yu L (2012) Cell morphology and chemical characteristics of corn stover fractions. Ind Crops Prod 37:130–136. https://doi.org/10.1016/j.indcrop.2011.11.025

    Article  Google Scholar 

  23. Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crops Prod 36:395–400. https://doi.org/10.1016/j.indcrop.2011.10.035

    Article  Google Scholar 

  24. Williams CL, Emerson RM, Hernandez S, Klinger JL, Fillerup EP, Thomas BJ (2018) Preprocessing and hybrid biochemical/thermochemical conversion of short rotation woody coppice for biofuels. Front Energy Res 6:74

    Article  Google Scholar 

  25. Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgwater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86:60–72. https://doi.org/10.1016/j.fuel.2006.06.022

    Article  Google Scholar 

  26. Li C, Aston JE, Lacey JA, Thompson VS, Thompson DN (2016) Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew Sust Energy Rev 65:525–536. https://doi.org/10.1016/j.rser.2016.06.063

    Article  Google Scholar 

  27. Cousins DS, Otto WG, Rony AH, Pedersen KP, Aston JE, Hodge DB (2022) Near-infrared spectroscopy can predict anatomical abundance in corn stover. Front Energy Res 10:836690. https://doi.org/10.3389/fenrg.2022.836690

  28. Hu H, Westover TL, Cherry R, Aston JE, Lacey JA, Thompson DN (2017) Process simulation and cost analysis for removing inorganics from wood chips using combined mechanical and chemical preprocessing. BioEnergy Res 10:237–247. https://doi.org/10.1007/s12155-016-9794-3

    Article  Google Scholar 

  29. Bilanski WK, Lai R (1965) Behavior of threshed materials in a vertical wind tunnel. Trans ASAE 8:411–0413. https://doi.org/10.13031/2013.40533

    Article  Google Scholar 

  30. Farran IG, Macmillan RH (1979) Grain-Chaff separation in a vertical air stream. J Agric Eng Res 24:115–129. https://doi.org/10.1016/0021-8634(79)90046-5

    Article  Google Scholar 

  31. Smith RD, Liljedahl JB, Peart RM, Doering OC, Sahm WC (1984) Development and evaluation of a cob salvaging system. Trans ASAE 27:590–0596. https://doi.org/10.13031/2013.32834

    Article  Google Scholar 

  32. Smith RD, Stroshine RL (1985) Aerodynamic separation of cobs from corn harvest residues. Trans ASAE 28:893–0897. https://doi.org/10.13031/2013.32358

    Article  Google Scholar 

  33. Hartmann H, Böhm T, Daugbjerg Jensen P, Temmerman M, Rabier F, Golser M (2006) Methods for size classification of wood chips. Biomass Bioenergy 30:944–953. https://doi.org/10.1016/j.biombioe.2006.06.010

    Article  Google Scholar 

  34. Igathinathane C, Pordesimo LO, Columbus EP, Batchelor WD, Methuku SR (2008) Shape identification and particles size distribution from basic shape parameters using ImageJ. Comput Electron Agric 63:168–182. https://doi.org/10.1016/j.compag.2008.02.007

    Article  Google Scholar 

  35. Igathinathane C, Melin S, Sokhansanj S, Bi X, Lim CJ, Pordesimo LO, Columbus EP (2009) Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets. Powder Technol 196:202–212. https://doi.org/10.1016/j.powtec.2009.07.024

    Article  Google Scholar 

  36. Igathinathane C, Pordesimo LO, Columbus EP, Batchelor WD, Sokhansanj S (2009) Sieveless particle size distribution analysis of particulate materials through computer vision. Comput Electron Agric 66:147–158. https://doi.org/10.1016/j.compag.2009.01.005

    Article  Google Scholar 

  37. Guo Q, Chen X, Liu H (2012) Experimental research on shape and size distribution of biomass particle. Fuel 94:551–555. https://doi.org/10.1016/j.fuel.2011.11.041

    Article  Google Scholar 

  38. Gil M, Teruel E, Arauzo I (2014) Analysis of standard sieving method for milled biomass through image processing. Effects of particle shape and size for poplar and corn stover. Fuel 116:328–340. https://doi.org/10.1016/j.fuel.2013.08.011

    Article  Google Scholar 

  39. Lu Z, Hu X, Lu Y (2017) Particle morphology analysis of biomass material based on improved image processing method. Int J Anal Chem 2017:5840690. https://doi.org/10.1155/2017/5840690

    Article  Google Scholar 

  40. Chaloupková V, Ivanova T, Krepl V (2019) Particle size and shape characterization of feedstock material for biofuel production. Agron Res 17:1861–1873. https://doi.org/10.15159/ar.19.152

    Article  Google Scholar 

  41. Chinga G (2002) Shape descriptors. https://imagej.nih.gov/ij/plugins/descriptors.html

  42. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70. https://doi.org/10.1016/0032-5910(89)80008-7

    Article  Google Scholar 

  43. Vesilind PA (1980) The Rosin-Rammler particle size distribution. Resour Recov Conserv 5:275–277. https://doi.org/10.1016/0304-3967(80)90007-4

    Article  Google Scholar 

  44. Lisowski A, Matkowski P, Dąbrowska M, Piątek M, Świętochowski A, Klonowski J, Mieszkalski L, Reshetiuk V (2020) Particle size distribution and physicochemical properties of pellets made of straw, hay, and their blends. Waste Biomass Valori 11:63–75. https://doi.org/10.1007/s12649-018-0458-8

    Article  Google Scholar 

  45. Bitra VSP, Womac AR, Yang YT, Miu PI, Igathinathane C, Chevanan N, Sokhansanj S (2011) Characterization of wheat straw particle size distributions as affected by knife mill operating factors. Biomass Bioenerg 35:3674–3686. https://doi.org/10.1016/j.biombioe.2011.05.026

    Article  Google Scholar 

  46. Bitra VSP, Womac AR, Yang YT, Miu PI, Igathinathane C, Sokhansanj S (2009) Mathematical model parameters for describing the particle size spectra of knife-milled corn stover. Biosyst Eng 104:369–383. https://doi.org/10.1016/j.biosystemseng.2009.08.007

    Article  Google Scholar 

  47. Gil M, Arauzo I (2014) Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels. Fuel Process Technol 127:80–87. https://doi.org/10.1016/j.fuproc.2014.06.016

    Article  Google Scholar 

  48. Sluiter AD, Hames BR, Ruiz R, Scarlata C, Sluiter J, Templeton DW, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory, Golden, CO, 2012

  49. Tran-Cong S, Gay M, Michaelides EE (2004) Drag coefficients of irregularly shaped particles. Powder Technol 139:21–32. https://doi.org/10.1016/j.powtec.2003.10.002

    Article  Google Scholar 

  50. Gudavalli C, Bose E, Donohoe BS, Sievers DA (2020) Real-time biomass feedstock particle quality detection using image analysis and machine vision. Biomass Conv Biorefinery. https://doi.org/10.1007/s13399-020-00904-w

  51. Johansson R, Evertsson M (2012) CFD simulation of a gravitational air classifier. Miner Eng 33:20–26. https://doi.org/10.1016/j.mineng.2012.01.007

    Article  Google Scholar 

  52. Altuhafi FN, Coop MR (2011) Changes to particle characteristics associated with the compression of sands. Géotechnique 61:459–471. https://doi.org/10.1680/geot.9.P.114

    Article  Google Scholar 

  53. Almeida ED, Spogis N, Taranto OP, Silva MA (2019) Theoretical study of pneumatic separation of sugarcane bagasse particles. Biomass Bioenergy 127:105256

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Bioenergy Technologies Office (BETO) and FOA-0002029 under the Award Number DE-EE0008907 “Enhanced Feedstock Characterization and Modeling to Facilitate Optimal Preprocessing and Deconstruction of Corn Stover.”

Author information

Authors and Affiliations

Authors

Contributions

DSC developed the theoretical framework, designed and carried out the experimental work, and drafted the manuscript. AHR carried out experimental work in air classification. WGO assisted with experimental work sorting anatomical fractions of corn stover. KPP carried out experimental work in sieving and manual fractionation. SH carried out experimental work in material production. JAL helped conceive of the framework and provided insight into the experiments. JEA coordinated material delivery and helped conceive of the theoretical framework. DBH oversaw the project, helped conceive the theoretical framework, provided guidance on manuscript storyboarding, and edited the manuscript.

Corresponding author

Correspondence to David B. Hodge.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1299 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cousins, D.S., Rony, A.H., Otto, W.G. et al. Predictive models enhance feedstock quality of corn stover via air classification. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03307-1

Keywords

Navigation