Skip to main content

Advertisement

Log in

Hydrogenolysis of alkali lignin via a non-precious Co-Mo bimetallic catalyst supported on attapulgite-Ce0.75Zr0.25O2

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignin is the world’s greatest renewable aromatic biomass resource, with considerable potential for the development of high-value-added compounds. Herein, wet impregnation was employed to create Co-Mo/ATP-CZO bimetallic catalysts, which were then used to catalyze the depolymerization of lignin in ethanol and isopropanol. The findings of the characterization revealed that doping Mo metals resulted in the change of metallic oxide phase, which increased the oxygen vacancy (OV), improved metal-carrier interaction, and decreased acid center content. The results of the experiments demonstrated that catalytic hydrogenation with a 12Mo-20Co/ATP-CZO catalyst at 240 °C for 8 h produced the maximum yield of bio-oil (57.44 wt%, including 37.58 wt% of monomer). Under these conditions, the bio-oil had a higher heating value of 33.20 MJ/kg, which was significantly higher than the alkali lignin’s 19.62 MJ/kg. Catalyst stability tests also revealed good recyclability. This research will provide an efficient method for depolymerizing lignin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iris K, Tsang DC (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Biores Technol 238:716–732. https://doi.org/10.1016/j.biortech.2017.04.026

    Article  Google Scholar 

  2. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41. https://doi.org/10.1002/ceat.201000270

    Article  Google Scholar 

  3. Liu X, Jiang Z, Feng S, Zhang H, Li J, Hu C (2019) Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel 244:247–257. https://doi.org/10.1016/j.fuel.2019.01.117

    Article  Google Scholar 

  4. Sun RC (2020) Lignin source and structural characterization. Chemsuschem 13:4385–4393. https://doi.org/10.1002/cssc.202001699

    Article  Google Scholar 

  5. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. https://doi.org/10.1016/j.fuel.2020.118048

    Article  Google Scholar 

  6. Gosselink RJ, Teunissen W, Van Dam JE, De Jong E, Gellerstedt G, Scott EL, Sanders JP (2012) Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Biores Technol 106:173–177. https://doi.org/10.1016/j.biortech.2011.11.121

    Article  Google Scholar 

  7. Sergeev AG, Webb JD, Hartwig JF (2012) A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J Am Chem Soc 134:20226–20229. https://doi.org/10.1021/ja3085912

    Article  Google Scholar 

  8. Hidajat MJ, Riaz A, Park J, Insyani R, Verma D, Kim J (2017) Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub-and supercritical fluids. Chem Eng J 317:9–19. https://doi.org/10.1016/j.cej.2017.02.045

    Article  Google Scholar 

  9. Guan W, Chen X, Hu H, Tsang C-W, Zhang J, Lin CSK, Liang C (2020) Catalytic hydrogenolysis of lignin β-O-4 aryl ether compound and lignin to aromatics over Rh/Nb2O5 under low H2 pressure. Fuel Process Technol 203:106392. https://doi.org/10.1016/j.fuproc.2020.106392

    Article  Google Scholar 

  10. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci 6:994–1007. https://doi.org/10.1039/C2EE23741E

    Article  Google Scholar 

  11. Rautiainen S, Di Francesco D, Katea SN, Westin G, Tungasmita DN, Samec JS (2019) Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic Compounds. Chemsuschem 12:404–408. https://doi.org/10.1002/cssc.201802497

    Article  Google Scholar 

  12. Huang X, Korányi TI, Boot MD, Hensen EJ (2014) Catalytic depolymerization of lignin in supercritical ethanol. Chemsuschem 7:2276–2288. https://doi.org/10.1002/cssc.201402094

    Article  Google Scholar 

  13. Chen M, Tang Z, Wang Y, Shi J, Li C, Yang Z, Wang J (2022) Catalytic depolymerization of Kraft lignin to liquid fuels and guaiacol over phosphorus modified Mo/Sepiolite catalyst. Chem Eng J 427:131761. https://doi.org/10.1016/j.cej.2021.131761

    Article  Google Scholar 

  14. Haden WL, Schwint IA (1967) Attapulgite: its properties and applications. Ind Eng Chem 59:58–69

    Article  Google Scholar 

  15. Guo H, Zhang H, Peng F, Yang H, Xiong L, Wang C, Huang C, Chen X, Ma L (2015) Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas. Appl Catal A 503:51–61. https://doi.org/10.1016/j.clay.2015.03.009

    Article  Google Scholar 

  16. Cao J-L, Shao G-S, Wang Y, Liu Y, Yuan Z-Y (2008) CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catal Commun 9:2555–2559. https://doi.org/10.1016/j.catcom.2008.07.016

    Article  Google Scholar 

  17. Guo H, Zhang H, Peng F, Yang H, Xiong L, Huang C, Wang C, Chen X, Ma L (2015) Mixed alcohols synthesis from syngas over activated palygorskite supported Cu–Fe–Co based catalysts. Appl Clay Sci 111:83–89. https://doi.org/10.1016/j.apcata.2015.07.008

    Article  Google Scholar 

  18. Liang C, Gao Z, Lian H, Li X, Zhang S, Liu Q, Dong D, Hu X (2020) Impacts of metal loading in Ni/attapulgite on distribution of the alkalinity sites and reaction intermediates in CO2 methanation reaction. Int J Hydrogen Energy 45:16153–16160. https://doi.org/10.1016/j.ijhydene.2020.04.070

    Article  Google Scholar 

  19. Yan Z, Liu Q, Liang L, Ouyang J (2021) Surface hydroxyls mediated CO2 methanation at ambient pressure over attapulgite-loaded Ni-TiO2 composite catalysts with high activity and reuse ability. J CO2 Utilization 47:101489. https://doi.org/10.1016/j.jcou.2021.101489

    Article  Google Scholar 

  20. Tian H, Guo Q, Xu D (2010) Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. J Power Sources 195:2136–2142. https://doi.org/10.1016/j.jpowsour.2009.10.006

    Article  Google Scholar 

  21. Wang Y, Chen M, Li X, Yang Z, Liang T, Zhou Z, Cao Y (2018) Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts. Int J Hydrogen Energy 43:20438–20450. https://doi.org/10.1016/j.ijhydene.2018.09.109

    Article  Google Scholar 

  22. Chen T, Liu H, Shi P, Chen D, Song L, He H, Frost RL (2013) CO2 reforming of toluene as model compound of biomass tar on Ni/Palygorskite. Fuel 107:699–705. https://doi.org/10.1016/j.fuel.2012.12.036

    Article  Google Scholar 

  23. Liu H, Chen T, Chang D, Chen D, Kong D, Zou X, Frost RL (2012) Effect of preparation method of palygorskite-supported Fe and Ni catalysts on catalytic cracking of biomass tar. Chem Eng J 188:108–112. https://doi.org/10.1016/j.cej.2012.01.109

    Article  Google Scholar 

  24. Guo H, Zhang H, Zhang L, Wang C, Peng F, Huang Q, Xiong L, Huang C, Ouyang X, Chen X (2018) Selective hydrogenation of furfural to furfuryl alcohol over acid-activated attapulgite-supported NiCoB amorphous alloy catalyst. Ind Eng Chem Res 57:498–511. https://doi.org/10.1021/acs.iecr.7b03699

    Article  Google Scholar 

  25. Guo H, Zhang H, Chen X, Zhang L, Huang C, Li H, Peng F, Huang Q, Xiong L, Ouyang X (2018) Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst. Energy Convers Manage 156:130–139. https://doi.org/10.1016/j.enconman.2017.11.006

    Article  Google Scholar 

  26. Dar BA, Khalid S, Wani TA, Mir MA, Farooqui M (2015) Ceria-based mixed oxide supported CuO: an efficient heterogeneous catalyst for conversion of cellulose to sorbitol. Green and Sustainable Chemistry 5:15. https://doi.org/10.4236/gsc.2015.51003

    Article  Google Scholar 

  27. Grams J, Niewiadomski M, Ryczkowski R, Ruppert AM, Kwapiński W (2016) Activity and characterization of Ni catalyst supported on CeO2–ZrO2 for thermo-chemical conversion of cellulose. Int J Hydrog Energy 41:8679–8687. https://doi.org/10.1016/j.ijhydene.2015.11.140

    Article  Google Scholar 

  28. Schimming SM, LaMont OD, König M, Rogers AK, D’Amico AD, Yung MM, Sievers C (2015) Hydrodeoxygenation of guaiacol over ceria–zirconia catalysts. Chemsuschem 8:2073–2083. https://doi.org/10.1002/cssc.201500317

    Article  Google Scholar 

  29. Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago T, Masuda T (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B 146:289–297. https://doi.org/10.1016/j.apcatb.2013.03.010

    Article  Google Scholar 

  30. Prieto P, Ferreira A, Haddad P, Zanchet D, Bueno J (2010) Designing Pt nanoparticles supported on CeO2–Al2O3: synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane. J Catal 276:351–359. https://doi.org/10.1016/j.jcat.2010.09.025

    Article  Google Scholar 

  31. Amairia C, Fessi S, Ghorbel A, Rîves A (2010) Methane oxidation behaviour over sol–gel derived Pd/Al2O3-ZrO2 materials: influence of the zirconium precursor. J Mol Catal A: Chem 332:25–31. https://doi.org/10.1016/j.molcata.2010.08.013

    Article  Google Scholar 

  32. Chen Q-Y, Li N, Luo M-F, Lu J-Q (2012) Catalytic oxidation of dichloromethane over Pt/CeO2–Al2O3 catalysts. Appl Catal B 127:159–166. https://doi.org/10.1016/j.apcatb.2012.08.020

    Article  Google Scholar 

  33. Barbelli ML, Pompeo F, Santori GF, Nichio NN (2013) Pt catalyst supported on α-Al2O3 modified with CeO2 and ZrO2 for aqueous-phase-reforming of glycerol. Catal Today 213:58–64. https://doi.org/10.1016/j.cattod.2013.02.023

    Article  Google Scholar 

  34. Guo H, Li Q, Zhang H, Peng F, Xiong L, Yao S, Huang C, Chen X (2019) CO2 hydrogenation over acid-activated attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalysts. Mol Catal 476:110499. https://doi.org/10.1016/j.mcat.2019.110499

    Article  Google Scholar 

  35. Chen J, Wang D, Lu X, Guo H, Xiu P, Qin Y, Xu C and Gu X (2022) Effect of cobalt (II) on acid-modified attapulgite-supported catalysts on the depolymerization of alkali lignin. Ind Eng Chem Res https://doi.org/10.1021/acs.iecr.1c04695

  36. Wang J, Li W, Wang H, Ma Q, Li S, H-m C, Jameel H (2017) Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst. Biores Technol 243:100–106. https://doi.org/10.1016/j.biortech.2017.06.024

    Article  Google Scholar 

  37. Li W, Dou X, Zhu C, Wang J, Chang H-m, Jameel H, Li X (2018) Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst. Biores Technol 269:346–354. https://doi.org/10.1016/j.biortech.2018.08.125

    Article  Google Scholar 

  38. Zhu C, Dou X, Li W, Liu X, Li Q, Ma J, Liu Q, Ma L (2019) Efficient depolymerization of Kraft lignin to liquid fuels over an amorphous titanium-zirconium mixed oxide supported partially reduced nickel-cobalt catalyst. Biores Technol 284:293–301. https://doi.org/10.1016/j.biortech.2019.03.126

    Article  Google Scholar 

  39. Cui K, Yang L, Ma Z, Yan F, Wu K, Sang Y, Chen H, Li Y (2017) Selective conversion of guaiacol to substituted alkylphenols in supercritical ethanol over MoO3. Appl Catal B 219:592–602. https://doi.org/10.1016/j.apcatb.2017.08.009

    Article  Google Scholar 

  40. Prasomsri T, Shetty M, Murugappan K, Román-Leshkov Y (2014) Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy Environ Sci 7:2660–2669. https://doi.org/10.1039/C4EE00890A

    Article  Google Scholar 

  41. Ressler T, Jentoft RE, Wienold J, Günter MM, Timpe O (2000) In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J Phys Chem B 104:6360–6370. https://doi.org/10.1021/jp000690t

    Article  Google Scholar 

  42. Li X, Ni C, Yao C, Chen Z (2012) Development of attapulgite/Ce1−xZrxO2 nanocomposite as catalyst for the degradation of methylene blue. Appl Catal B 117:118–124. https://doi.org/10.1016/j.apcatb.2012.01.008

    Article  Google Scholar 

  43. St GC, Stoyanova M, Georgieva M, Mehandjiev D (1999) Preparation and characterization of a higher cobalt oxide. Mater Chem Phys 60:39–43. https://doi.org/10.1016/S0254-0584(99)00053-X

    Article  Google Scholar 

  44. Chithambararaj A, Rajeswari Yogamalar N, Bose AC (2016) Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: new findings on crystal-structure-dependent charge transport. Cryst Growth Des 16:1984–1995. https://doi.org/10.1021/acs.cgd.5b01571

    Article  Google Scholar 

  45. Ding Q, Huang H, Duan J, Gong J, Yang S, Zhao X, Du Y (2006) Molybdenum trioxide nanostructures prepared by thermal oxidization of molybdenum. J Cryst Growth 294:304–308. https://doi.org/10.1016/j.jcrysgro.2006.07.004

    Article  Google Scholar 

  46. Gao L, Li C, Zhang J, Du X, Li S, Zeng J, Yi Y, Zeng G (2018) Simultaneous removal of NO and Hg0 from simulated flue gas over CoOx-CeO2 loaded biomass activated carbon derived from maize straw at low temperatures. Chem Eng J 342:339–349. https://doi.org/10.1016/j.cej.2018.02.100

    Article  Google Scholar 

  47. Wang C, Zhang C, Hua W, Guo Y, Lu G, Gil S, Giroir-Fendler A (2017) Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem Eng J 315:392–402. https://doi.org/10.1016/j.cej.2018.02.100

    Article  Google Scholar 

  48. Zhang X, Tang J, Zhang Q, Liu Q, Li Y, Chen L, Wang C, Ma L (2019) Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst. Catal Today 319:41–47. https://doi.org/10.1016/j.cattod.2018.03.068

    Article  Google Scholar 

  49. Lai W, Pang L, Zheng J, Li J, Wu Z, Yi X, Fang W, Jia L (2013) Efficient one pot synthesis of mesoporous NiMo–Al2O3 catalysts for dibenzothiophene hydrodesulfurization. Fuel Process Technol 110:8–16. https://doi.org/10.1016/j.fuproc.2013.01.006

    Article  Google Scholar 

  50. Chen M, Ma X, Ma R, Wen Z, Yan F, Cui K, Chen H, Li Y (2017) Ethanolysis of kraft lignin over a reduction-modified MoO3 catalyst. Ind Eng Chem Res 56:14025–14033. https://doi.org/10.1021/acs.iecr.7b03585

    Article  Google Scholar 

  51. Chen N, Gong S, Qian EW (2015) Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Appl Catal B 174:253–263. https://doi.org/10.1016/j.apcatb.2015.03.011

    Article  Google Scholar 

  52. González J, Wang JA, Chen L, Manríquez M, Salmones J, Limas R, Arellano U (2018) Quantitative determination of oxygen defects, surface lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts. J Solid State Chem 263:100–114. https://doi.org/10.1016/j.jssc.2018.04.005

    Article  Google Scholar 

  53. Choi J-G, Thompson L (1996) XPS study of as-prepared and reduced molybdenum oxides. Appl Surf Sci 93:143–149. https://doi.org/10.1016/0169-4332(95)00317-7

    Article  Google Scholar 

  54. Oregui-Bengoechea M, Gandarias I, Miletić N, Simonsen SF, Kronstad A, Arias PL, Barth T (2017) Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites. Appl Catal B 217:353–364. https://doi.org/10.1016/j.apcatb.2017.06.004

    Article  Google Scholar 

  55. Huang X, Atay C, Korányi TI, Boot MD, Hensen EJ (2015) Role of Cu–Mg–Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catal 5:7359–7370. https://doi.org/10.1021/acscatal.5b02230

    Article  Google Scholar 

  56. Raikwar D, Munagala M, Majumdar S, Shee D (2019) Hydrodeoxygenation of guaiacol over Mo, W and Ta modified supported nickel catalysts. Catal Today 325:117–130. https://doi.org/10.1016/j.cattod.2018.09.039

    Article  Google Scholar 

  57. Zhang C, Li H, Lu J, Zhang X, MacArthur KE, Heggen M, Wang F (2017) Promoting lignin depolymerization and restraining the condensation via an oxidation− hydrogenation strategy. ACS Catal 7:3419–3429. https://doi.org/10.1021/acscatal.7b00148

    Article  Google Scholar 

  58. Shu R, Zhang Q, Ma L, Xu Y, Chen P, Wang C, Wang T (2016) Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin. Biores Technol 221:568–575. https://doi.org/10.1016/j.biortech.2016.09.043

    Article  Google Scholar 

  59. Yuan Z, Cheng S, Leitch M, Xu CC (2010) Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Biores Technol 101:9308–9313. https://doi.org/10.1016/j.biortech.2010.06.140

    Article  Google Scholar 

Download references

Funding

This research was financially supported by National Natural Science Foundation of China (No. 21774059).

Author information

Authors and Affiliations

Authors

Contributions

J. C. and P. X. performed experiments. J. C. and X. G. conceived research, analyzed data, and wrote the manuscript with help from all the others.

Corresponding author

Correspondence to Xiaoli Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Co-Mo bimetallic catalyst exhibited excellent activity on lignin depolymerization.

• The addition of Mo promoted the production of fuel and phenol monomers from lignin.

• Co-Mo/ATP-CZO catalyst shown higher selectivity compared with Co/ATP-CZO.

• Maximally 57.44 wt% of monomeric and dimeric degradation products was obtained.

• The HHV of liquid product was increased from 28.35 to 33.20 MJ/kg.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xiu, P. & Gu, X. Hydrogenolysis of alkali lignin via a non-precious Co-Mo bimetallic catalyst supported on attapulgite-Ce0.75Zr0.25O2. Biomass Conv. Bioref. 14, 11389–11401 (2024). https://doi.org/10.1007/s13399-022-03166-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03166-w

Keywords

Navigation