Skip to main content
Log in

Bioremediation of organoarsenic pollutants from wastewater: a critical review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract 

Toxic inorganic and organic species of arsenic are present in the environment. Arsenic adversely affects health of millions of people across the world. Inorganic As species are naturally present in the earth crust and organic arsenic species are generated after entry of inorganic species in the organisms. Synthetic organoarsenic species are applied herbicide and pesticide in agriculture fields and used as animal feed additive due anti-parasitic nature. The present review briefly discusses removal of commonly used organoarsenic species by physicochemical techniques, microbial transformation, and degradation along with the recent insight of microbial application strategies for minimizing the arsenic accumulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adak A, Mangalgiri KP, Lee J, Blaney L (2015) UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals. Water Res 70:74e85

  2. Aposhian HV (1997) Enzymatic methylation of arsenic species and othernew approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37(1):397–419.

    Article  Google Scholar 

  3. Azam SM, Gousul G, Sarker TC, Naz S (2016) Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: A review. Toxicol Mech Methods 26(8):565–79. https://doi.org/10.1080/15376516.2016.1230165

    Article  Google Scholar 

  4. Basova Sofia, Wilke Nathalie, Koch Jan Christoph, Prokop A, Berkessel A, Pradel G, Ngwa CJ (2020) Organoarsenic compounds with in vitro activity against the malaria parasite plasmodium falciparum. Biomedicines 8(8):E260. https://doi.org/10.3390/biomedicines8080260

    Article  Google Scholar 

  5. Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S (1997) Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13:819–828

    Article  Google Scholar 

  6. Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Siddique KH (2022) Antimony contamination and its risk management in complex environmental settings: a review. Environ Int 158:106908

  7. Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    Article  Google Scholar 

  8. Chen B, Zhu Z, Ma J, Qiu Y, Chen J (2015) Iron oxide supported sulfhydryl-functionalized multiwalled carbon nanotubes for removal of arsenite from aqueous solution. Chem Plus Chem 80:740–748

    Google Scholar 

  9. Chen J, Yoshinaga M, Rosen BP (2019) The antibiotic action of methylarsenite is an emergent property of microbial communities. Mol Microbiol 111(2):487–494

    Article  Google Scholar 

  10. Chen S, Deng J, Ye C, Chengcheng X, Huai L, Li J, Li X (2020) Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process. Sci Total Environ 742:140–587. https://doi.org/10.1016/j.scitotenv.2020.140587

  11. Chen C, Liu L, Li Y, Zhou L, Lan Y (2021) Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate. J Hazard Mater 407:124–559. https://doi.org/10.1016/j.jhazmat.2020.124559

  12. Cheng L, Min D, Liu D-F, Li W-W, Yu H-Q (2019) Sensing and approaching toxic arsenate by Shewanella putrefaciens CN-32. Environ Sci Technol 53(24):14604–14611. https://doi.org/10.1021/acs.est.9b05890

    Article  Google Scholar 

  13. Das J, Sarkar P (2018) Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ 624:1106–1118

    Article  Google Scholar 

  14. Dey S, Dou D, Tisa LS, Rosen BP (1994) Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase. Arch Biochem Biophys 311:418–424

    Article  Google Scholar 

  15. Ding W, Zheng H, Sun Y, Zhao Z, Zheng X, Wu Y, Xiao W (2021) Activation of MnFe2O4 by sulfite for fast and efficient removal of arsenic (III) at circumneutral pH: involvement of Mn (III).J Hazard Mater 403:123623

  16. Fei J, Wang T, Zhou Y, Wang Z, XiaoboMin Y, Wenyong H, Chai L (2018) Aromatic organoarsenic compounds (AOCs) Occurrence and remediation methods. Chemosphere 207:665–75. https://doi.org/10.1016/j.chemosphere.2018.05.145

    Article  Google Scholar 

  17. Galperin MY, Walker DR, Koonin EV (1998) Analogous enzymes: independent inventions in enzyme evolution. Genome Res 8:779–790

    Article  Google Scholar 

  18. Garbarino JR, Bednar AJ, Rutherford DW et al (2003) Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting Environ. Sci Technol 37(8):1509–1514.

  19. Ghosh M, Shen J, Rosen BP (1999) Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001–5006

    Article  Google Scholar 

  20. Guo T, Li L, Zhai W, Xu B, Yin X, He Y, Xu J, Zhang T, Tang X (2019) Distribution of arsenic and its biotransformation genes in sediments from the East China Sea. Environ Pollut(Barking, Essex: 1987) 253:949–958

  21. Guo Y, Gao J, Cui Y, Wang Z, Li Z, Duan W, Wu Z (2022) Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms. Sci Total Environ 816:151599

  22. Hall LL, George SE, Kohan MJ, Styblo M, Thomas DJ (1997) In vitro methylation of inorganic arsenic in mouse intestinal cecum. Toxicol Appl Pharmacol 147:101–109

    Article  Google Scholar 

  23. Han JC, Zhang F, Cheng L et al (2017) Rapid release of arsenite from roxarsone bioreduction by exoelectrogenic bacteria. Environ Sci Technol Lett 4(8):350–355.

    Article  Google Scholar 

  24. Hare V, Chowdhary P, Kumar B, Sharma DC, Baghel VS (2019) Arsenic toxicity and its remediation strategies for fighting the environmental threat. Emerging Eco-Friendly Approaches Waste Manag. Springer, Singapore pp 143–170

  25. Henke KR (2009) Arsenic in naturalenvironments. In: Henke K (ed) Arsenic: environmental chemistry, health threats and waste treatment. JohnWiley & Sons Ltd., Chichester, UK, pp 69–235

    Chapter  Google Scholar 

  26. Henke KR, Hutchison A (2009) Arsenic chemistry. Arsenic: Environmental chemistry health threats and waste treatment 9–68.

  27. Hossain MA, Mrinal KS, Sad A, Mohammad MR, Debapriya M, Dilip L, Bhaskar D, Bishwajit N, Bimal KR, Amitava M, Dipankar C (2005) Ineffectiveness and poor reliability of arsenic removal plants in West bengal. India. Environ Sci Technol 39(11):4300–4306. https://doi.org/10.1021/es048703u

  28. Huang K, Peng H, Gao F, Liu Q, Lu X, Shen Q, Le XC, Zhao F-J (2019) Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. Environ Pollut (Barking, Essex: 1987) 247:482–487

  29. Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J (2021) Arsenic speciation and biotransformation pathways in the aquatic ecosystem: the significance of algae. J Hazard Mater 403:124027

  30. Jang YC, Somanna Y, Kim H (2016) Source, distribution, toxicity and remediation of arsenic in the environment a review. Inter J Applied Environ Sci 11(2):559–581

    Google Scholar 

  31. Ji Y, Shi Y, Kong D, Lu J (2016) Degradation of roxarsone in a sulfate radical mediated oxidation process and formation of polynitrated by-products. RSC Adv 6:82040e82048

  32. Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R (2006) In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect 114(12):1826–31. https://doi.org/10.1289/ehp.9322

    Article  Google Scholar 

  33. Ke MK, Huang GX, Mei SC, Wang ZH, Zhang YJ, Hua TW, Zheng LR, YU HQ (2021) Interface-promoted direct oxidation of p-arsanilic acid and removal of total arsenic by the coupling of peroxymonosulfate and mn-fe-mixed oxide. Environ Sci Technol 55(10):7063–71. https://doi.org/10.1021/acs.est.1c00386

    Article  Google Scholar 

  34. Kuang L, Hou Y, Huang F, Hong H, Sun H, Deng W, Lin H (2020) Pesticide residues in breast milk and the associated risk assessment: A review focused on China. Sci Total  Environ 727

  35. Kuramata M, Sakakibara F, Kataoka R, Abe T, Asano M, Baba K, Takagi K, Ishikawa S (2015) Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environ Microbiol 17(6):1897–1909

  36. Lakshmanan V, Shantharaj D, Li G, Seyfferth AL, Janine Sherrier D, Bais HP (2015) A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta 242(4):1037–1050

  37. Li J, Pawitwar SS, Rosen, BP (2016a) The organoarsenical biocycle and the primordial antibiotic methylarsenite. Metallomics: Integrated Biometal Science 8(10):1047–1055. https://doi.org/10.1039/c6mt00168h

  38. Li S, Xu J, Chen W, Yu Y, Liu Z, Li J, Wu F (2016b) Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection. J Environ Sci China 47:39–48. https://doi.org/10.1016/j.jes.2016.01.017

  39. Li Y, Yaci L, Zhang Z, Fei Y, Tian X, Cao S (2020) Identification of an anaerobic bacterial consortium that degrades roxarsone. Microbiology Open 9. https://doi.org/10.1002/mbo3.1003

  40. Liu H, Zuo K, Vecitis CD (2014) Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ Sci Technol 48:13871–13879

  41. Mafla S, Moraga R, León CG, Guzmán-Fierro VG, Yañez J, Smith CT, Campos VL (2015) Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact. World J Microbiol Biotechnol 31(8):1267–1277. https://doi.org/10.1007/s11274-015-1886-2

  42. Mandal B, Suzuki K (2002) Arsenic round the world: a review. Talanta 58:201–235

  43. Mastrotheodoros GP, Beltsios KG (2022) Pigments-Iron-based red, yellow, and brown ochres. Archaeol Anthropol Sci 14(2):1–25

  44. Mohd S, Shukla J, Kushwaha AS, Mandrah K, Shankar J, Arjaria N, Saxena PN, Narayan R, Roy SK, Kumar M (2017) Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front Microbiol 8:754

    Article  Google Scholar 

  45. Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A (2018) An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8(1):6979

    Article  Google Scholar 

  46. Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the saccharomyces cerevisiae arsenate reductase. J Biol Chem 275(28):21149–21157. https://doi.org/10.1074/jbc.M910401199

    Article  Google Scholar 

  47. Nadar VS, Yoshinaga M, Pawitwar SS, Kandavelu P, Sankaran B, Rosen BP (2016) Structure of the ArsI C-As lyase: insights into the mechanism of degradation of organoarsenical herbicides and growth promoters. J Mol Biol 428(11):2462–2473

    Article  Google Scholar 

  48. Navazas A, Thijs S, Feito I, Vangronsveld J, Peláez AI, Cuypers A, González A (2021) Arsenate-reducing bacteria affect as accumulation and tolerance in salix atrocinerea. Sci Total Environ 769:144–648. https://doi.org/10.1016/j.scitotenv.2020.144648

  49. Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing G (2015) Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Public Health 13:62

    Article  Google Scholar 

  50. Pous N, Casentini, B, Rossetti S, Fazi S, Puig S, Aulenta F (2015) Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater 283:617–622. Process. Pres. 1, 8

  51. Rieuwerts JS (2015) The mobility and bioavailability of trace metals in tropical soils. A review. Chemical speciation and bioavailability 19(2):75–85. https://doi.org/10.3184/095422907X211918

    Article  Google Scholar 

  52. Rodríguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science, New York 341(6148):866–68. https://doi.org/10.1126/science.1237484

  53. Rosen BP, Bhattacharjee H, Zhou TQ, Walmsely AR (1999) Mechanism of the ArsA ATPase. Biochim Biophys Acta 1461:207–215

    Article  Google Scholar 

  54. Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  Google Scholar 

  55. Saucedo-Velez AA et al (2017) Speciation analysis of organoarsenic compounds in livestock feed by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Food Chem 232:493–500. https://doi.org/10.1016/j.foodchem.2017.04.012

    Article  Google Scholar 

  56. Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30(6):583–609

    Article  Google Scholar 

  57. Sharma Waddington H, Cairncross S (2021) PROTOCOL: Water, sanitation and hygiene for reducing childhood mortality in low‐and middle‐income countries. Campbell Syst Rev 17(1):e1135

  58. Shi L, Wang W, Yuan SJ et al (2014) Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environ Sci Technol 48(14):7951–7958.

    Article  Google Scholar 

  59. Shi K, Li C, Rensing C, Dai X, Fan X, Wang G (2018) Efflux transporter ArsK Is responsible for bacterial resistance to arsenite, antimonite, trivalentRoxarsone, methylarsenite. Appl Environ Microbiol 84(24):e01842-18. https://doi.org/10.1128/AEM.01842-18

    Article  Google Scholar 

  60. Silver S, Phung LT, Rosen BP (2001) Arsenic metabolism: resistance, reduction and oxidation. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 247–272

    Google Scholar 

  61. Stahlberg H, Braun T, de Groot B, Philippsen A, Borgnia MJ, Agre P, Kuhlbrandt W, Engel A (2000) The 6.9-Å structure of GlpF: a basis for homology modeling of the glycerol channel from escherichia coli. J Struct Biol 132:133–141.

    Article  Google Scholar 

  62. Stolz JF, Perera E, Kilonzo B, Kail B, Crable B, Fisher E, Ranganathan M, Wormer L, Basu P (2007) Biotransformation of 3-Nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by clostridium species. Environ Sci Technol 41(3):818–23. https://doi.org/10.1021/es061802i

    Article  Google Scholar 

  63. Sun J et al (2018) Arsenicmobilization from iron oxides in the presence of oxalic acid under hydrodynamic conditions. Chemosphere 212:219–227. https://doi.org/10.1016/j.chemosphere.2018.08.058

    Article  Google Scholar 

  64. Tang R, Prommer H, Yuan S, Wang W, Sun Jing, Jamieson James, Zhen-Hu Hu (2021) Enhancing roxarsone degradation and in situ arsenic immobilization using a sulfate-mediated bioelectrochemical system. Environ Sci Technol 55(1):393–401. https://doi.org/10.1021/acs.est.0c06781

    Article  Google Scholar 

  65. Tang R, Wu G, Yue Z, Wang W, Zhan X, Zhen-Hu H (2020) Anaerobic biotransformation of roxarsone regulated by sulfate: Degradation, arsenic accumulation and volatilization. Enviro pollut (Barking, Essex: 1987) 267:115–602.  https://doi.org/10.1016/j.envpol.2020.115602

  66. Teixeira MC, Santos AC, Fernandes CS, Ng Jack C (2020) Arsenic contamination assessment in brazil-past, present and future concerns: a historical and critical review. Sci Total Environ 730:138–217. https://doi.org/10.1016/j.scitotenv.2020.138217

  67. Thomas JA, Chovanec P, Stolz JF et al (2014) Mapping the proteinprofile involved in the biotransformation of organoarsenicals using an arsenic metabolizing bacterium. Metallomics 6(10):1958–1969.

    Article  Google Scholar 

  68. Tripti K, Shardendu S (2021) Efficiency of arsenic remediation from growth medium through bacillus licheniformis modulated by phosphate (PO4)3- and nitrate (NO3)- enrichment. Arch Microbiol 203(7):4081–89. https://doi.org/10.1007/s00203-021-02392-6

    Article  Google Scholar 

  69. Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A, Tripathi RD, Nautiyal CS (2017) Arsenic tolerant Trichoderma sp. Reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut (Barking, Essex: 1987) 223:137–145

  70. Verma S, Sinha A (2022) Appraisal of groundwater arsenic on opposite banks of River Ganges, West Bengal, India, and quantification of cancer risk using Monte Carlo simulations. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17902-8

    Article  Google Scholar 

  71. Wang L, Cheng H (2015) Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-arsanilic acid. Environ Sci Technol 49(6):3473–3481

    Article  Google Scholar 

  72. Wang P, He X, Zhang W, Ma J, Jiang J, Huang Z, Cheng H, Pang S, Zhou Y, Zhai X (2020) Highly efficient removal of p-arsanilic acid with fe(II) peroxydisulfate under near-neutral conditions. Water Res 177:115–752.  https://doi.org/10.1016/j.watres.2020.115752

  73. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39(15):5531–40. https://doi.org/10.1021/es0502324

    Article  Google Scholar 

  74. World Health Organization. (2007). Silver in drinking water: Background document for development of WHO Guidelines for Drinking-water Quality (No. WHO/HEP/ECH/WSH/2021.7). World Health Organization.

    Google Scholar 

  75. Wu LK, Wu H, Zhang HB, Cao HZ, Hou GY, Tang YP, Zheng GQ (2018) Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water. Chem Engg J 334:1808–1819

    Article  Google Scholar 

  76. Xie X, Cheng H (2019) A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe (III) oxide-hydroxide. Environ Int 127:730–41. https://doi.org/10.1016/j.envint.2019.03.059

    Article  Google Scholar 

  77. Xie X, Hu Y, Cheng H (2016) Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process. Water Res 89:59–67

    Article  Google Scholar 

  78. Xue XM, Xiong C, Yoshinaga M, Rosen B, Zhu YG (2021) The enigma of environmental organoarsenicals: Insights and implications. Crit Rev Environ Sci Technol 1–28

  79. Yang T, Liu Y, Wang L, Jiang J, Huang Z, Pang S-Y, Cheng H, Gao D, Ma J (2018) Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. Water Res. 147:321–330. https://doi.org/10.1016/j.watres.2018.10.012

    Article  Google Scholar 

  80. Yang T, Wu S, Liu C, Liu Y, Zhang H, Cheng H, Wang L, Guo L, Li Y, Liu M, Ma J (2021) Efficient degradation of organoarsenic by UV/chlorine treatment: kinetics, mechanism, enhanced arsenic removal, and cytotoxicity. Environ Sci Technol 55(3):2037–2047

  81. Ye C, Deng J, Huai L, Cai A, Ling X, Guo H, Wang Q, Li X (2022) Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism. Sci. Total Environ. 806

  82. Yin Y et al (2021) Removal of inorganic arsenicfrom aqueous solution by Fe-modified ceramsite: batch studies and remediation trials. Water Sci Technol 83(7):1522–1534. https://doi.org/10.2166/wst.2021.076

  83. Zhang L et al (2020) Global impact of atmospheric arsenic on health risk: 2005to 2015. Proceedings of the National Academy of Sciences of the United States of America 117(25):13975–13982. https://doi.org/10.1073/pnas.2002580117

  84. Ziegelhofer A, Kujala K (2021) Assessing the diversity and metabolic potential of psychrotolerant arsenic-metabolizing microorganisms from a subarctic peatland used for treatment of mining-affected waters by culture-dependent and independent techniques. Front Microbiol 12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Bahadur Pal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Inorganic and organic arsenics are present in different habitats and ecosystems.

• Physicochemical techniques organoarsenic pollutants.

• Biological techniques to remove arsenic and organoarsenic pollutants from wastewater.

• Organic pollutant affecting different ecosystems and habitats on the earth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, D.D., Srivastava, N., Ruidas, B.C. et al. Bioremediation of organoarsenic pollutants from wastewater: a critical review. Biomass Conv. Bioref. 13, 13357–13367 (2023). https://doi.org/10.1007/s13399-022-02689-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02689-6

Keywords

Navigation