Skip to main content
Log in

Detailed economic assessment of polylactic acid production by using glucose platform: sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This paper presents a detailed economic assessment of the polylactic acid (PLA) production line in an existing petrochemical facility in Colombia. The detailed economic assessment was done by applying an integrated methodology for the economic assessment to reduce the existing gap between the capital expenditures estimated from conceptual design and detailed engineering. The integrated economic assessment approach was developed involving conceptual and detailed design aspects. For this purpose, the PLA production process was evaluated using the glucose platform from sugarcane bagasse, coffee cut stems, and plantain peels as raw materials. The yield of glucose, operating and investment costs were considered from the open literature. The mass and energy balances for the process were obtained using Aspen Plus V.9.0. software. The capital cost estimation (CapEx) was made using the Aspen Capital Cost Estimator. CapEx and operational expenditures (OpEx) estimates were adjusted using industry guidelines. Finally, financial analysis methods and key ratios were used to measure the investment profitability and prefeasibility of the process at various PLA gross incomes. Regarding the methodology proposed, a comparison between the traditional economic assessment and the proposed integrated strategy showed a deviation of 256%. The results are more similar than those reported by the engineering, procurement, and construction (EPC) companies. Finally, the CapEx for the PLA process with an annual production rate of 2000 MT reached up to USD 10.35 million with a gross income of USD 1400/MT and 9.5 years payback period from containing economic prefeasibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors authorize the publication of the data and results shown in the article.

References

  1. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change-a review. Energy Policy 52:797–809. https://doi.org/10.1016/j.enpol.2012.10.046

    Article  Google Scholar 

  2. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Natl Acad Sci USA 105(11):4513–4518. https://doi.org/10.1073/pnas.0708300105

    Article  Google Scholar 

  3. Fonseca GC, Costa CBB, Cruz AJG (2020) Economic analysis of a second-generation ethanol and electricity biorefinery using superstructural optimization. Energy 204:117988. https://doi.org/10.1016/j.energy.2020.117988

    Article  Google Scholar 

  4. Jones D, Ormondroyd GO, Curling SF, Popescu CM, and Popescu MC (2017) "Chemical compositions of natural fibres," in Advanced high strength natural fibre composites in construction. Elsevier Inc. 23–58. https://doi.org/10.1016/B978-0-08-100411-1.00002-9

  5. Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate C E, Acosta-Medina CD, and Cardona-Alzate CA (2020) "Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment." Biomass Conversion and Biorefinery 1–15 https://doi.org/10.1007/s13399-020-00627-y

  6. DANE-Banco de la Republica (2016) “El PIB colombiano se contrajo 6,8% en 2020 y 3,6% en el cuarto trimestre según el Dane,” https://www.larepublica.co/economia/siga-aqui-la-publicacion-de-los-resultados-del-dane-del-pib-de-colombia-en-2020-3125471 (accessed May 07, 2021)

  7. “El sector agropecuario creció 6,8% e impulsó la economía colombiana en el primer trimestre de (2020).” https://www.minagricultura.gov.co/noticias/Paginas/El-sector-agropecuario-creció-6,8-e-impulsó-la-economía-colombiana-en-el-primer-trimestre-de-2020-.aspx (accessed May 07, 2021).

  8. Li J et al (2019) n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. Biores Technol 289:121749. https://doi.org/10.1016/J.BIORTECH.2019.121749

    Article  Google Scholar 

  9. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055

    Article  Google Scholar 

  10. Quintero JA, Cardona CA (2011) Process simulation of fuel ethanol production from lignocellulosics using aspen plus. Ind Eng Chem Res 50(10):6205–6212. https://doi.org/10.1021/ie101767x

    Article  Google Scholar 

  11. Quintero JA, Moncada J, Cardona CA (2013) Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Biores Technol 139:300–307. https://doi.org/10.1016/j.biortech.2013.04.048

    Article  Google Scholar 

  12. Alonso-gómez LA, Solarte-Toro JC, Bello-Pérez LA, Cardona-alzate CA (2020) Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod Process 121:29–42. https://doi.org/10.1016/j.fbp.2020.01.005

    Article  Google Scholar 

  13. D. González, V. Santos, and J. C. Parajó (2011) "Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo." Chem Eng J https://doi.org/10.1016/j.cej.2010.12.066.

  14. Avinc O, Khoddami A (2009) Overview of poly(lactic acid) (PLA) fibre. Fibre Chem 41(6):391–401. https://doi.org/10.1007/s10692-010-9213-z

    Article  Google Scholar 

  15. Petrou S, Gray A (2011) Economic evaluation using decision analytical modelling: design, conduct, analysis, and reporting. Research Methods & Reporting 342(7808):1–6. https://doi.org/10.1136/bmj.d1766

    Article  Google Scholar 

  16. Bogenstätter U (2000) Prediction and optimization of life-cycle costs in early design. Building Research and Information 28(5–6):376–386. https://doi.org/10.1080/096132100418528

    Article  Google Scholar 

  17. Douglas JM (1988). Conceptual design of chemical processes. https://doi.org/10.1002/jctb.280460308

    Article  Google Scholar 

  18. Peters M, Timmerhaus K, and West R (2003) Plant design and economics for chemical engineers, Fifth ed. New York

  19. Martín M and Martínez A (2016) "Tools for formulated product design," in Computer aided chemical engineering, vol. 39, Elsevier B.V 373–392 https://doi.org/10.1016/B978-0-444-63683-6.00013-7

  20. Dimian AC, Bildea CS, and Kiss AA (2014) "Health, safety and environment," in Computer aided chemical engineering, vol. 35, Elsevier B.V 649–678. https://doi.org/10.1016/B978-0-444-62700-1.00016-4

  21. Garrett DE (1989) Chemical engineering economics, vol 1. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  22. Forrest Clark and Lorenzoni AB (1997) Applied cost engineering , 3rd ed. New York: Marcel Dekker

  23. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207. https://doi.org/10.1016/j.desal.2012.10.015

    Article  Google Scholar 

  24. Karellas S, Boukis I, and Kontopoulos G (2010) "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, vol. 14, no. 4. Pergamon, pp. 1273–1282, May https://doi.org/10.1016/j.rser.2009.12.002

  25. Huisman GH, Van Rens GLMA, De Lathouder H, Cornelissen RL (2011) Cost estimation of biomass-to-fuel plants producing methanol, dimethylether or hydrogen. Biomass Bioenerg 35(SUPPL. 1):S155–S166. https://doi.org/10.1016/j.biombioe.2011.04.038

    Article  Google Scholar 

  26. Reymen I, Berends H, Oudehand R, Stultiëns R (2017) Decision making for business model development: a process study of effectuation and causation in new technology-based ventures. R&D Management 47(4):595–606. https://doi.org/10.1111/radm.12249

    Article  Google Scholar 

  27. Nel AJH, Vosloo JC, Mathews MJ (2018) Financial model for energy efficiency projects in the mining industry. Energy 163:546–554. https://doi.org/10.1016/j.energy.2018.08.154

    Article  Google Scholar 

  28. Manca D, Fini A and Oliosi M (2011) Dynamic conceptual design under market uncertainty and price volatility, vol. 29 https://doi.org/10.1016/B978-0-444-53711-9.50068-7

  29. Manca D, Conte A, Barzaghi R (2015) How to account for market volatility in the conceptual design of chemical processes. Chem Eng Trans 43:1333–1338. https://doi.org/10.3303/CET1543223

    Article  Google Scholar 

  30. Manca D (2016) Price model of electrical energy for PSE applications. Comput Chem Eng 84:208–216. https://doi.org/10.1016/j.compchemeng.2015.08.013

    Article  Google Scholar 

  31. Manca D, Grana R (2010) Dynamic conceptual design of industrial processes. Comput Chem Eng 34(5):656–667. https://doi.org/10.1016/j.compchemeng.2010.01.004

    Article  Google Scholar 

  32. Sorknæs P, Lund H, Andersen AN (2015) Future power market and sustainable energy solutions - the treatment of uncertainties in the daily operation of combined heat and power plants. Appl Energy 144:129–138. https://doi.org/10.1016/j.apenergy.2015.02.041

    Article  Google Scholar 

  33. Cardona C, Moncada J, Aristizabal V (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134. https://doi.org/10.1016/j.bej.2016.06.009

    Article  Google Scholar 

  34. Lee S, Koo Y (2004) Model development for lactic acid fermentation and parameter optimization using genetic algorithm. SIMULATION 14:1163–1169

    Google Scholar 

  35. Min D-J, Choi KH, Chang YK, Kim J-H (2011) Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J Chem Eng 28(10):1969–1974. https://doi.org/10.1007/s11814-011-0082-9

    Article  Google Scholar 

  36. Şahin S, İsmail Kırbaşlar Ş and Bilgin M (2009) "(Liquid+liquid) equilibria of (water+lactic acid+alcohol) ternary systems." The Journal of Chemical Thermodynamics, 41 1 97–102 Jan https://doi.org/10.1016/j.jct.2008.07.014

  37. Domingues L, Cussolin PA, da Silva JL, de Oliveira LH, Aznar M (2013) Liquid–liquid equilibrium data for ternary systems of water+lactic acid+C4–C7 alcohols at 298.2K and atmospheric pressure. Fluid Phase Equilib 354:12–18. https://doi.org/10.1016/j.fluid.2013.06.007

    Article  Google Scholar 

  38. Mussatto SI, Fernandes M, Mancilha IM, Roberto IC (2008) Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochem Eng J 40(3):437–444. https://doi.org/10.1016/J.BEJ.2008.01.013

    Article  Google Scholar 

Download references

Funding

The authors express their gratitude to the project ESENTTIA-CNBT COLCIENCIAS code No 665173454353 B Desarrollo del Producto y Proceso de Producción de Terpolímeros de Propileno-Etileno-Buteno and the research program entitled “Reconstrucción del tejido social en zonas posconflicto en Colombia” SIGP code: 57579 with the project entitled “Competencias empresariales y de innovación para el desarrollo económico y la inclusión productiva de las regiones afectadas por el conflicto colombiano” SIGP code 58907. Contract number: FP44842-213–2018. Moreover, this work was also supported by the research project “Aprovechamiento y valorización sostenible de residuos sólidos orgánicos y su posible aplicación en borrefinerías y tecnologías de residuos a energía en el departamento de Sucre” code BPIN 2020000100189. The authors express their gratitude to the call PROGRAMA NACIONAL PARA LAS MUJERES EN LA CIENCIA UNESCOL’ORÉAL-MINCIENCIAS-ICETEX.

Author information

Authors and Affiliations

Authors

Contributions

C. Rueda-Duran: investigation, methodology, analysis, writing—original draft, edition; M. Ortiz-Sanchez: investigation, methodology, simulation, analysis, writing—original draft; C.A. Cardona-Alzate: funding acquisition, conceptualization, supervision, writing.

Corresponding author

Correspondence to Carlos Ariel Cardona-Alzate.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rueda-Duran, CA., Ortiz-Sanchez, M. & Cardona-Alzate, C.A. Detailed economic assessment of polylactic acid production by using glucose platform: sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials. Biomass Conv. Bioref. 12, 4419–4434 (2022). https://doi.org/10.1007/s13399-022-02501-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02501-5

Keywords

Navigation