Skip to main content
Log in

Green production of noncytotoxic rhamnolipids from jackfruit waste: process and prospects

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The green conversion of jackfruit waste into noncytotoxic biosurfactants shows promise as a biomass refinery approach. In this study, jackfruit waste was extracted and used as the sole media for microbial biosurfactant production. This biomolecule manufacturing procedure yielded 2.3 g/L of biosurfactants, which was detected to contain mainly rhamnolipids (RLs) at a production cost of $ 1.08 kg−1. These RLs have excellent emulsifying properties against a wide range of hydrophobic substrates, including crude oil, olive oil, kerosene, n-hexadecane, and diesel, showing emulsification index values of 100, 83, 80, 42, and 58%, respectively. The resultant product demonstrated potent antifungal activity against Alternaria solani in in vitro trials, inhibiting up to 83% of fungal growth. In a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay performed against the mouse fibroblastic cell line L292, RLs derived from jackfruit waste were found to be nontoxic, indicating their potential for cosmetic and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar M, You S, Beiyuan J, Luo G, Gupta J, Kumar S, Singh L, Zhang S, Tsang DCW (2021) Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects. Bioresour Technol 320:124412. https://doi.org/10.1016/J.BIORTECH.2020.124412

    Article  Google Scholar 

  2. Sen S, Borah SN, Sarma H, Bora A, Deka S (2021) Utilization of distillers dried grains with solubles as a cheaper substrate for sophorolipid production by Rhodotorula babjevae YS3. J Environ Chem Eng 9:105494. https://doi.org/10.1016/j.jece.2021.105494

    Article  Google Scholar 

  3. Farias CBB, Almeida FCG, Silva IA, Souza TC, Meira HM, Soares da Silva R de CF, Luna JM, Santos VA, Converti A, Banat IM, Sarubbo LA (2021) Production of green surfactants: market prospects. Electron J Biotechnol 51:28–39. https://doi.org/10.1016/J.EJBT.2021.02.002

    Article  Google Scholar 

  4. Banat IM, Carboué Q, Saucedo-Castañeda G, de Jesús Cázares-Marinero J (2021) Biosurfactants: The green generation of speciality chemicals and potential production using solid-state fermentation (SSF) technology. Bioresour Technol 320:124222. https://doi.org/10.1016/j.biortech.2020.124222

    Article  Google Scholar 

  5. Markande AR, Patel D, Varjani S (2021) A review on biosurfactants: properties, applications and current developments. Bioresour Technol 330:124963. https://doi.org/10.1016/j.biortech.2021.124963

    Article  Google Scholar 

  6. Varjani S, Rakholiya P, Yong Ng H, Taherzadeh MJ, Hao Ngo H, Chang JS, Wong JWC, You S, Teixeira JA, Bui XT (2021) Bio-based rhamnolipids production and recovery from waste streams: status and perspectives. Bioresour Technol 319:124213. https://doi.org/10.1016/j.biortech.2020.124213

    Article  Google Scholar 

  7. Ozdal M, Gurkok S, Ozdal O (2017) Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech 7. https://doi.org/10.1007/S13205-017-0774-X

  8. George S, Jayachandran J (2013) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 114:373–383. https://doi.org/10.1111/JAM.12069

    Article  Google Scholar 

  9. Chooklin S, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173:624–645. https://doi.org/10.1007/S12010-014-0870-X

    Article  Google Scholar 

  10. Solaiman D, Ashby R, Nuñez A, Foglia T (2004) Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol Lett 26:1241–1245. https://doi.org/10.1023/B:BILE.0000036605.80577.30

    Article  Google Scholar 

  11. Das AJ, Kumar R (2018) Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresour Technol 260:233–240. https://doi.org/10.1016/j.biortech.2018.03.093

    Article  Google Scholar 

  12. Patowary R, Patowary K, Kalita M, Deka S (2016) Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Appl Biochem Biotechnol 180:383–399. https://doi.org/10.1007/S12010-016-2105-9

    Article  Google Scholar 

  13. Saimmai A, Sobhon V, Maneerat S (2011) Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. In: Appl Biochem Biotechnol:315–335. https://doi.org/10.1007/S12010-011-9253-8

  14. Jiang J, Zu Y, Li X, Meng Q, Long X (2020) Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresour Technol 298:122394. https://doi.org/10.1016/J.BIORTECH.2019.122394

    Article  Google Scholar 

  15. Jagadeesh SL, Reddy BS, Swamy GSK, Gorbal K, Hegde L, Raghavan GSV (2007) Chemical composition of jackfruit (Artocarpus heterophyllus Lam.) selections of Western Ghats of India. Food Chem 102:361–365. https://doi.org/10.1016/j.foodchem.2006.05.027

    Article  Google Scholar 

  16. Sharma P, Gaur VK, Kim SH, Pandey A (2020) Microbial strategies for bio-transforming food waste into resources. Bioresour Technol 299:122580. https://doi.org/10.1016/J.BIORTECH.2019.122580

    Article  Google Scholar 

  17. Rajulapati V, Dhillon A, Goyal A (2021) Enzymatically produced pectic-oligosaccharides from fruit waste of Citrus reticulata (mandarin) peels display cytotoxicity against colon cancer cells. Bioresour Technol Rep 15:100740. https://doi.org/10.1016/J.BITEB.2021.100740

    Article  Google Scholar 

  18. Sarma H, Prasad MNV (2015) Plant-microbe association-assisted removal of heavy metals and degradation of polycyclic aromatic hydrocarbons. Pet Geosci Indian Context. https://doi.org/10.1007/978-3-319-03119-4_10

    Article  Google Scholar 

  19. Yue MQ, Wang Z, Dun BQ, Han FX, Li GY (2021) Simplified methods of estimating fermentable sugar yield in sweet sorghum [Sorghum bicolor (L.) Moench] stems. Ind Crops Prod 169:113652. https://doi.org/10.1016/J.INDCROP.2021.113652

    Article  Google Scholar 

  20. Yao S, Nie S, Yuan Y, Wang S, Qin C (2015) Efficient extraction of bagasse hemicelluloses and characterization of solid remainder. Bioresour Technol 185:21–27. https://doi.org/10.1016/J.BIORTECH.2015.02.052

    Article  Google Scholar 

  21. Sarma H, Nava AR, Manriquez AME, Dominguez DC, Lee WY (2019) Biodegradation of bisphenol A by bacterial consortia isolated directly from river sediments. Environ Technol Innov 14:100314. https://doi.org/10.1016/j.eti.2019.01.008

    Article  Google Scholar 

  22. Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463. https://doi.org/10.1111/J.1365-2672.2004.02480.X

    Article  Google Scholar 

  23. Mukprasirt A, Sajjaanantakul K (2004) Physico-chemical properties of flour and starch from jackfruit seeds (Artocarpus heterophyllus Lam.) compared with modified starches. Int J Food Sci Technol 39:271–276. https://doi.org/10.1111/J.1365-2621.2004.00781.X

    Article  Google Scholar 

  24. Lin CN, Lu CM (1993) Heterophylol, a phenolic compound with novel skeletonfrom Artocarpus heterophyllus. Tetrahedron Lett 34(17):8249−8250

  25. Ranasinghe RASN, Maduwanthi SDT, Marapana RAUJ (2019) Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): a review. Int J Food Sci 2019. https://doi.org/10.1155/2019/4327183.

  26. Patowary R, Patowary K, Kalita MC, Deka S (2018) Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. Int Biodeterior Biodegrad 129:50–60. https://doi.org/10.1016/J.IBIOD.2018.01.004

    Article  Google Scholar 

  27. Anbu S, Padma J, Punithavalli K, Saranraj P (2017) Fruits peel waste as a novel media for the growth of economically important Fungi. J Pharmacogn Phytochem 6:426–428. https://www.phytojournal.com/archives/?year=2017&vol=6&issue=6&ArticleId=2110. Accessed July 11, 2021

  28. Sharma N, Palmoo Bhutia S, Aradhya D (2013) Process optimization for fermentation of wine from jackfruit (Artocarpus heterophyllus Lam.). J Food Process Technol 4(2):1000204. https://doi.org/10.4172/2157-7110.1000204

  29. Tan YN, Li Q (2018) Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact 17:89. https://doi.org/10.1186/s12934-018-0938-3

    Article  Google Scholar 

  30. Dubey K, Juwarkar A (2001) Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J Microbiol Biotechnol 17(1):61–69. https://doi.org/10.1023/A:1016606509385

    Article  Google Scholar 

  31. Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150. https://doi.org/10.1016/J.BIORTECH.2016.04.027

    Article  Google Scholar 

  32. Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93. https://doi.org/10.1016/J.BIORTECH.2014.11.069

    Article  Google Scholar 

  33. Heyd M, Kohnert A, Tan T-H, Nusser M, Kirschhöfer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391(5):1579–1590. https://doi.org/10.1007/s00216-007-1828-4

    Article  Google Scholar 

  34. Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–77. https://doi.org/10.1016/J.MIMET.2005.04.005

    Article  Google Scholar 

  35. Wolpert M, Hellwig P (2006) Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm-1. Spectrochim Acta A Mol Biomol Spectrosc 64:987–1001. https://doi.org/10.1016/J.SAA.2005.08.025

    Article  Google Scholar 

  36. Pantazaki AA, Papaneophytou CP, Lambropoulou DA (2011) Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express 1:17. https://doi.org/10.1186/2191-0855-1-17

    Article  Google Scholar 

  37. Zhou J, Xue R, Liu S, Xu N, Xin F, Zhang W, Jiang M, Dong W (2019) High di-rhamnolipid production using Pseudomonas aeruginosa KT1115, separation of mono/di-rhamnolipids, and evaluation of their properties. Front Bioeng Biotechnol 7:245. https://doi.org/10.3389/FBIOE.2019.00245

    Article  Google Scholar 

  38. Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, RamuDirisala V, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249. https://doi.org/10.1016/J.PETLM.2018.03.007

    Article  Google Scholar 

  39. Ferreira A, Vecino X, Ferreira D, Cruz J, Moldes A, Rodrigues L (2017) Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf B Biointerfaces 155:522–529. https://doi.org/10.1016/J.COLSURFB.2017.04.026

    Article  Google Scholar 

  40. Sarma H, Narasimha M, Prasad V, Wiley J (2021) Front Matter. In: Biosurfactants a Sustain. Futur., Wiley. https://doi.org/10.1002/9781119671022.fmatter

  41. Rodrigues AI, Gudiña EJ, Teixeira JA, Rodrigues LR (2021) Biosurfactants as biocontrol agents against mycotoxigenic fungi, in: Biosurfactants a Sustain. Futur., Wiley, pp. 465–490. https://doi.org/10.1002/9781119671022.ch21

  42. Lahkar J, Borah SN, Deka S, Ahmed G (2015) Biosurfactant of Pseudomonas aeruginosa JS29 against Alternaria solani: the causal organism of early blight of tomato. Biocontrol 60:401–411. https://doi.org/10.1007/S10526-015-9650-Y

    Article  Google Scholar 

  43. Rodrigues AI, Gudiña EJ, Abrunhosa L, Malheiro AR, Fernandes R, Teixeira JA, Rodrigues LR (2021) Rhamnolipids inhibit aflatoxins production in Aspergillus flavus by causing structural damages in the fungal hyphae and down-regulating the expression of their biosynthetic genes. Int J Food Microbiol 348:109207. https://doi.org/10.1016/J.IJFOODMICRO.2021.109207

    Article  Google Scholar 

  44. Monnier N, Cordier M, Dahi A, Santoni V, Guénin S, Clément C, Sarazin C, Penaud A, Dorey S, Cordelier S, Rippa S (2020) Semipurified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. Phytopathology 110:834–842. https://doi.org/10.1094/PHYTO-07-19-0275-R/ASSET/IMAGES/LARGE/PHYTO-07-19-0275-R_F5.JPEG

    Article  Google Scholar 

  45. Saikia RR, Deka S, Sarma H (2021) Biosurfactants from Bacteria and Fungi. In: Biosurfactants a Sustain. Futur., Wiley, pp. 293–315. https://doi.org/10.1002/9781119671022.ch13

  46. Karnwal A (2021) Biosurfactant production using bioreactors from industrial byproducts. In: Biosurfactants a Sustain. Futur., Wiley, pp. 59–78. https://doi.org/10.1002/9781119671022.ch3

  47. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 0:697. https://doi.org/10.3389/FMICB.2014.00697

    Article  Google Scholar 

  48. Rane AN, Baikar VV, Kumar VR, Deopurkar RL (2017) Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol 8. https://doi.org/10.3389/FMICB.2017.00492

  49. Costa SGVAO, Nitschke M, Lépine F, Déziel E, Contiero J (2010) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2–1 from cassava wastewater. Process Biochem 45:1511–1516. https://doi.org/10.1016/J.PROCBIO.2010.05.033

    Article  Google Scholar 

  50. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. https://doi.org/10.1007/S00253-010-2589-0

    Article  Google Scholar 

  51. Dhanarajan G, Sen R (2014) Cost analysis of biosurfactant production from a scientist’s perspective. In: Kosaric N, Sukan FV (eds) Biosurfactants. CRC Press, pp 153–162. [https://www.taylorfrancis.com/chapters/mono/10.1201/b17599-12/cost-analysis-biosurfactant-production-scientist-perspective-naim-kosaric-fazilet-vardar-sukan?context=ubx&refId=9560789a-fe41-4b51-843b-dfeeca3b5094. https://doi.org/10.1201/b17599-12

  52. Ashby RD, McAloon AJ, Solaiman DKY, Yee WC, Reed M (2013) A process model for approximating the production costs of the fermentative synthesis of sophorolipids. J Surfactants Deterg 16:683–691. https://doi.org/10.1007/s11743-013-1466-0

    Article  Google Scholar 

  53. Deshpande M, Daniels L (1995) Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Bioresour Technol 54:143–150. https://doi.org/10.1016/0960-8524(95)00116-6

    Article  Google Scholar 

  54. Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737. https://doi.org/10.1351/pac199264111731

    Article  Google Scholar 

  55. Srivastava S, Mondal MK, Agrawal SB (2021) Biosurfactants for heavy metal remediation and bioeconomics. In: Biosurfactants a Sustain. Futur., Wiley, pp. 79–98. https://doi.org/10.1002/9781119671022.ch4

Download references

Acknowledgements

The authors would like to express their gratitude to the Bodoland University, India, IASST India, and Gauhati University, India for logistical support and assistance. Rupshikha Patowary, the lead investigator, wishes to thank the Department of Biotechnology, Government of India, for funding Junior Research Fellow (JRF). The authors would like to thank Universiti Malaysia Terengganu, Universiti Teknologi PETRONAS, Universiti Malaysia Pahang and Universiti College of Technology Sarawak for financial support of Prof. Lam under Matching Grant (UMT/CRIM/2-2/25/Jld.8 (58), Vot 53381) to perform this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemen Sarma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patowary, R., Patowary, K., Kalita, M.C. et al. Green production of noncytotoxic rhamnolipids from jackfruit waste: process and prospects. Biomass Conv. Bioref. 12, 4375–4388 (2022). https://doi.org/10.1007/s13399-022-02427-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02427-y

Keywords

Navigation