Skip to main content

Advertisement

Log in

Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this research, a biohybrid nanocomposite (BHNC) reinforced with graphene (GF), multi-walled carbon nanotube (MWCNT), silicon carbide (SiC), and modified palm oil (MPO) has been synthesized. Both the experimental work plan and the optimum component amounts of BHNC have been determined according to the response surface methodology (RSM). Density, hardness, thermal conductivity coefficient, thermal stability, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) of BHNC have been investigated by characterization processes. Activation energy values calculated in BHNC’s thermal decomposition experiments are simulated using artificial neural networks (ANN). Also, new experimental systems have been improved for both MPO synthesis and the thermal decomposition of BHNC. According to the results obtained, as the mass of nanoparticles and MPO in the BHNC composition increases, the density, Shore D hardness, and thermal conductivity coefficient of this composite also raise. However, it has been determined that the effect of each nanoparticle on BHNC is different. When the most dominant properties on BHNC have been discussed, SiC, Shore D hardness, and MWCNT density affected the GF thermal conductivity coefficient. MPO is also found to significantly increase the activation energy of BHNC. Based on data obtained during thermal decomposition, BHNC’s activation energy values have been found 133.978 kJ/mol (Flynn–Wall–Ozawa), 131.245 kJ/mol (Kissinger), and 127.694 (Coats-Redfern) for experiment 11.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

References

  1. Haq M, Burgueño R, Mohanty AK, Misra M (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68(15–16):3344–3351. https://doi.org/10.1016/j.compscitech.2008.09.007

    Article  Google Scholar 

  2. Mustapha R, Rahmat AR, Abdul Majid R, Mustapha SNH (2019) Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review. Polym-Plast Technol Mater 58(12):1311–1326. https://doi.org/10.1080/25740881.2018.1563119

    Article  Google Scholar 

  3. Liu W, Xie T, Qiu R (2016) Bamboo fibers grafted with a soybean-oil-based monomer for its unsaturated polyester composites. Cellulose 23(4):2501–2513. https://doi.org/10.1007/s10570-016-0969-z

    Article  Google Scholar 

  4. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704. https://doi.org/10.1016/j.actbio.2013.08.040

    Article  Google Scholar 

  5. Konwar U, Karak N, Mandal M (2010) Vegetable oil-based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Prog Org Coat 68(4):265–273. https://doi.org/10.1016/j.porgcoat.2010.04.001

    Article  Google Scholar 

  6. Wu CS, Wu DY, Wang SS (2021) Preparation, characterization, and performance of bio-based polyester composites derived from renewable distillers grains and shellfish. J Polym Res 28(4):1–13. https://doi.org/10.1007/s10965-021-02471-8

    Article  MathSciNet  Google Scholar 

  7. Palanikumar K, Subbiah V (2019) Bio Caryota fiber reinforced polymer composites: mechanical properties and vibration behavior analysis. J Bionic Eng 16(3):480–491. https://doi.org/10.1007/s42235-019-0039-y

    Article  Google Scholar 

  8. Moudood A, Rahman A, Khanlou HM, Hall W, Öchsner A, Francucci G (2019) Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites. Compos B Eng 171(May):284–293. https://doi.org/10.1016/j.compositesb.2019.05.032

    Article  Google Scholar 

  9. Nabinejad O, Sujan D, Rahman ME, Davies IJ (2015) Effect of oil palm shell powder on the mechanical performance and thermal stability of polyester composites. Mater Des 65:823–830. https://doi.org/10.1016/j.matdes.2014.09.080

    Article  Google Scholar 

  10. Abass RU, Abass FU, Abas MO (2015) Improvement of mechanical properties of polyester composite reinforced by bio filler (Acro Shell). 2(3), 35–38

  11. Heckadka SS, Nayak SY, Gouthaman PV, Talwar A, Ravishankar VA, Thomas LG, Mathur A (2018) Influence of sawdust bio-filler on the tensile, flexural, and impact properties of Mangifera Indica leaf stalk fibre reinforced polyester composites. MATEC Web Conf, 144. https://doi.org/10.1051/matecconf/201714402024

  12. Hazarika A, Deka BK, Kong K, Kim DY, Nam YW, Choi JH, Kim CG, Park YB, Park HW (2018) Microwave absorption and mechanical performance of α-MnO2 nanostructures grown on woven Kevlar fiber/reduced graphene oxide-polyaniline nanofiber array-reinforced polyester resin composites. Compos B Eng 140:123–132. https://doi.org/10.1016/j.compositesb.2017.12.003

    Article  Google Scholar 

  13. Saharudin MS, Atif R, Inam F (2017) Effect of short-term water exposure on the mechanical properties of halloysite nanotube-multi layer graphene reinforced polyester nanocomposites. Polymers, 9(1). https://doi.org/10.3390/polym9010027

  14. Serenari F, Madinehei M, Moghimian N, Fabiani D, David E (2020) Development of reinforced polyester/graphene nanocomposite showing tailored electrical conductivity. Polymers 12(10):1–10. https://doi.org/10.3390/polym12102358

    Article  Google Scholar 

  15. Bastiurea M, Rodeanu MS, Dima D, Murarescu M, Andrei G (2015) Thermal and mechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Biostruct 10(2):521–533

    Google Scholar 

  16. Sang M, Shin J, Kim K, Yu KJ (2019) Electronic and thermal properties of graphene and recent advances in graphene-based electronics applications. Nanomaterials 9(3):1–33. https://doi.org/10.3390/nano9030374

    Article  Google Scholar 

  17. Abdullah SI, Ansari MNM (2015) Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J 11(2):151–156. https://doi.org/10.1016/j.hbrcj.2014.06.001

    Article  Google Scholar 

  18. Li A, Zhang C, Zhang YF (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9(9):1–17. https://doi.org/10.3390/polym9090437

    Article  Google Scholar 

  19. Sadek EM, El-Nashar DE, Ward AA, Ahmed SM (2018) Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J Polym Res, 25(12). https://doi.org/10.1007/s10965-018-1641-0

  20. Liu J, Xiong DB, Tan Z, Fan G, Guo Q, Su Y, Li Z, Zhang D (2018) Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminate composites. Mater Sci Eng A 729(December 2017):452–457. https://doi.org/10.1016/j.msea.2018.05.091

    Article  Google Scholar 

  21. Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70(4):633–637. https://doi.org/10.1016/j.compscitech.2009.12.017

    Article  Google Scholar 

  22. Makki MSI, Abdelaal MY, Bellucci S, Abdel Salam M (2014) Multi-walled carbon nanotubes/unsaturated polyester composites: mechanical and thermal properties study. Fuller Nanotub Carbon Nanostruct 22(9):820–833. https://doi.org/10.1080/1536383X.2012.742427

    Article  Google Scholar 

  23. Beg MDH, Moshiul Alam AKM, Yunus RM, Mina MF (2015) Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin. J Nanoparticle Res, 17(1). https://doi.org/10.1007/s11051-014-2846-8

  24. Wu Z, Meng L, Liu L, Jiang Z, Xing L, Jiang D, Huang Y (2014) Interfacial microstructure and properties of carbon fiber-reinforced unsaturated polyester composites modified with carbon nanotubes. J Adhes Sci Technol 28(5):444–453. https://doi.org/10.1080/01694243.2013.838341

    Article  Google Scholar 

  25. Selvam R, Ravi S, Raja R (2018) Wear resistance and water absorption study of SiC reinforced polyester composite. Mater Today Proc 5(6):14567–14572. https://doi.org/10.1016/j.matpr.2018.03.047

    Article  Google Scholar 

  26. Selvam, R., Ravi, S., & Raja, R. (2017). Fabrication of SiC particulate reinforced polyester matrix composite and investigation. IOP Conf Ser Mater Sci Eng, 197(1). https://doi.org/10.1088/1757-899X/197/1/012052

  27. Abas FO, Abass RU (2018) Study thermo-mechanical properties of polyester composite reinforced by ceramic particles, SiC. MATEC Web Conf 225:1–8. https://doi.org/10.1051/matecconf/201822501021

    Article  Google Scholar 

  28. Selvam R, Ravi S, Balasubramanian K (2018) Stress analysis of SIC reinforced polyester nano composite spur gear. Int J Eng Technol (UAE) 7(4.19):305–308. https://doi.org/10.14419/ijet.v7i2.8884

    Article  Google Scholar 

  29. Zainal Z, Longman AJ, Hurst S, Duggan K, Hughes CE, Caterson B, Harwood JL (2009) Modification of palm oil for anti-inflammatory nutraceutical properties. Lipids 44(7):581–592. https://doi.org/10.1007/s11745-009-3304-8

    Article  Google Scholar 

  30. Nur W, Wan F, Zulkifli M (2009) Bioplasticiser and palm oil. December 2017

  31. Of O (2017) Palm oil-based precursors for development of polymeric delivery system. Malays J Anal Sci 21(2):496–511. https://doi.org/10.17576/mjas-2017-2102-25

    Article  Google Scholar 

  32. Paper C, Universiti S, Nasional T (2016) Palm oil based polyols for polyurethane foams application palm oil based polyols for polyurethane foams application. February

  33. Yanen C, Aydoğmuş E (2021) Characterization of thermo-physical properties of nanoparticle reinforced the polyester nanocomposite. Dicle University Journal of the Institute of Natural and Applied Science, 10(2), 121–132. https://dergipark.org.tr/tr/pub/dufed. Accessed 2022

  34. Aydoğmuş E, Arslanoğlu H, Dağ M (2021) Production of waste polyethylene terephthalate reinforced biocomposite with RSM design and evaluation of thermophysical properties by ANN. J Build Eng 44:103337. https://doi.org/10.1016/j.jobe.2021.103337

    Article  Google Scholar 

  35. Orhan R, Aydoğmuş E, Topuz S, Arslanoğlu H (2021) Investigation of thermo-mechanical characteristics of borax reinforced polyester composites. J Build Eng 42:103051. https://doi.org/10.1016/j.jobe.2021.103051

    Article  Google Scholar 

  36. Vural Kök B, Aydoğmuş E, Yilmaz M, Akpolat M (2021) Investigation on the properties of new palm-oil-based polyurethane modified bitumen. Constr Build Mater 289:123152. https://doi.org/10.1016/j.conbuildmat.2021.123152

    Article  Google Scholar 

  37. Aydoğmuş E, Arslanoğlu H (2021) Kinetics of thermal decomposition of the polyester nanocomposites. Pet Sci Technol 39(13–14):484–500. https://doi.org/10.1080/10916466.2021.1937218

    Article  Google Scholar 

  38. Tibiletti L, Longuet C, Ferry L, Coutelen P, Mas A, Robin JJ, Lopez-Cuesta JM (2011) Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polym Degrad Stab 96(1):67–75. https://doi.org/10.1016/j.polymdegradstab.2010.10.015

    Article  Google Scholar 

  39. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  40. Dhakal HN, Zhang ZY, Bennett N (2012) Influence of fibre treatment and glass fibre hybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites. Compos B Eng 43(7):2757–2761. https://doi.org/10.1016/j.compositesb.2012.04.036

    Article  Google Scholar 

  41. Bayrakçeken H, Naktiyok J, Özer AK, Yurtcan AB (2017) Investigation of the thermal behavior of polypyrrole/carbon nanotube composites and utilization as capacitive material or support for catalysts. Chem Eng Commun 204(8):916–925. https://doi.org/10.1080/00986445.2017.1328409

    Article  Google Scholar 

  42. Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91(2):255–261. https://doi.org/10.1016/j.polymdegradstab.2005.05.003

    Article  Google Scholar 

  43. Aydoğmuş E, Dağ M, Yalçın ZG, Arslanoğlu H (2022) Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite. J Build Eng 47:103897. https://doi.org/10.1016/j.jobe.2021.103897

    Article  Google Scholar 

  44. Abnisa F, Sanni SE, Alaba PA (2021) Comparative study of catalytic performance and degradation kinetics of biodiesels produced using heterogeneous catalysts from kaolinite. J Environ Chem Eng, 9(4). https://doi.org/10.1016/j.jece.2021.105569

  45. Alaba PA, Sani YM, Daud WMAW (2016) A comparative study on thermal decomposition behavior of biodiesel samples produced from shea butter over micro- and mesoporous ZSM-5 zeolites using different kinetic models. J Therm Anal Calorim 126(2):943–948. https://doi.org/10.1007/s10973-016-5505-8

    Article  Google Scholar 

  46. Alaba PA, Popoola SI, Abnisal F, Lee CS, Ohunakin OS, Adetiba E, Akanle MB, Abdul Patah MF, Atayero AAA, Wan Daud WMA (2020) Thermal decomposition of rice husk: a comprehensive artificial intelligence predictive model. J Therm Anal Calorim 140(4):1811–1823. https://doi.org/10.1007/s10973-019-08915-0

    Article  Google Scholar 

  47. Zhou R, Huang B, Ding Y, Li W, Mu J (2019) Thermal decomposition mechanism and kinetic study of plasticwaste chlorinated polyvinyl chloride. Polymers, 11(12). https://doi.org/10.3390/polym11122080

  48. Mortaigne B, Bourbigot S, Le Bras M, Cordellier G, Baudry A, Dufay J (1999) Fire behaviour related to the thermal degradation of unsaturated polyesters. Polym Degrad Stab 64(3):443–448. https://doi.org/10.1016/S0141-3910(98)00149-9

    Article  Google Scholar 

  49. Nirmal U (2010) Prediction of friction coefficient of treated betelnut fibre reinforced polyester (T-BFRP) composite using artificial neural networks. Tribol Int 43(8):1417–1429. https://doi.org/10.1016/j.triboint.2010.01.013

    Article  Google Scholar 

  50. Behera RR, Ghadai RK, Kalita K, Banerjee S (2016) Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int J Plast Technol 20(2):424–450. https://doi.org/10.1007/s12588-016-9163-2

    Article  Google Scholar 

  51. Hassan AKF, Mohammed LS, Abdulsamad HJ (2018) Experimental and artificial neural network ANN investigation of bending fatigue behavior of glass fiber/polyester composite shafts. J Braz Soc Mech Sci Eng 40(4):1–10. https://doi.org/10.1007/s40430-018-1098-4

    Article  Google Scholar 

  52. Adeyi AJ, Durowoju MO, Adeyi O (2018) Experimental studies and artificial neural networks (ANN) modeling of moisture absorption characteristics of polyester/momodical fibre reinforced composite. Int J Mech Eng Technol 9(11):1453–1467

    Google Scholar 

  53. Keerthi Gowda BS, Easwara Prasad GL, Velmurgan R (2014) Prediction of tensile properties of untreated coir reinforced polyester matrix composites by prediction of tensile properties of untreated coir reinforced polyester matrix composites by ANN. International Journal of Materials Science, 9(January), 973–4589. http://www.ripublication.com

  54. Monticeli FM, Neves RM, Ornaghi Júnior HL (2021) Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers. Cellulose 28(4):1961–1971. https://doi.org/10.1007/s10570-021-03684-2

    Article  Google Scholar 

  55. Hijazi A, Al-dahidi S, Altarazi S (2020) A novel assisted artificial neural network modeling approach for improved accuracy using small datasets: application in residual strength evaluation of panels with multiple site damage cracks. Processes 8(11):1–29. https://doi.org/10.3390/app10228255

    Article  Google Scholar 

  56. Aydoğmuş E, Demirpolat AB, Arslanoğlu H (2022) Isothermal and non-isothermal drying behavior for grape (Vitis vinifera) by new improved system: exergy analysis, RSM, and modeling. Biomass Convers Biorefin 12:527–536. https://doi.org/10.1007/s13399-021-02034-3

    Article  Google Scholar 

  57. Demirpolat AB, Aydoğmuş E, Arslanoğlu H (2022) Drying behavior for Ocimum basilicum Lamiaceae with the new system: exergy analysis and RSM modeling. Biomass Convers Biorefin 12:515–526. https://doi.org/10.1007/s13399-021-02010-x

    Article  Google Scholar 

  58. Rajamurugan TV, Shanmugam K, Palanikumar K (2013) Analysis of delamination in drilling glass fiber reinforced polyester composites. Mater Des 45:80–87. https://doi.org/10.1016/j.matdes.2012.08.047

    Article  Google Scholar 

  59. Rajamurugan TV, Shanmugam K, Rajakumar S, Palanikumar K (2012) Modelling and analysis of thrust force in drilling of GFRP composites using response surface methodology (RSM). Procedia Eng 38:3757–3768. https://doi.org/10.1016/j.proeng.2012.06.431

    Article  Google Scholar 

  60. Bhat R, Mohan N, Sharma S, Agarwal RA, Rathi A, Subudhi KA (2019) Multi-response optimization of the thrust force, torque and surface roughness in drilling of glass fiber reinforced polyester composite using GRA-RSM. Mater Today Proc 19:333–338. https://doi.org/10.1016/j.matpr.2019.07.608

    Article  Google Scholar 

  61. Sinha AK, Bhattacharya S, Narang HK (2019) Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polym Polym Compos 27(9):597–608. https://doi.org/10.1177/0967391119855843

    Article  Google Scholar 

  62. Zarrinabadi E, Abghari R, Nazari A, Mirjalili M (2018) Environmental effects of enhancement of mechanical and hydrophobic properties of polyester fabrics using silica/kaolinite/silver nanocomposite: a facile technique for synthesis and RSM optimization. EurAsian J BioSci 12(2):437–450

    Google Scholar 

  63. Nayak SK, Satapathy A, Mantry S (2020) Wear characteristics of glass-polyester-based hybrid composites: a parametric analysis using response surface method and fuzzy logic. Polym Compos 41(9):3687–3697. https://doi.org/10.1002/pc.25667

    Article  Google Scholar 

  64. Alaba PA, Sani YM, Mohammed IY, Abakr YA, Wan Daud WMA (2017) Synthesis of hierarchical nanoporous HY zeolites from activated kaolin, a central composite design optimization study. Adv Powder Technol 28(5):1399–1410. https://doi.org/10.1016/j.apt.2017.03.008

    Article  Google Scholar 

  65. Ayodele OB, Alaba PA (2019) Polymer’s characterization and properties, Chapter 3, 59–75. https://doi.org/10.1007/978-3-030-00743-0_3

  66. Reddy KO, Shukla M, Maheswari CU, Rajulu AV (2012) Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. J Compos Mater 46(23):2987–2998. https://doi.org/10.1177/0021998312454032

    Article  Google Scholar 

  67. Şahal H, Aydoğmuş E (2021) Production and characterization of palm oil based epoxy biocomposite by RSM design. Hittite J Sci Eng 8(4):287–297. https://doi.org/10.17350/HJSE19030000241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Aydoğmuş.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Modified palm oil synthesis by the new improved microwave system.

• Biohybrid nanocomposite production from GF, MWCNT, SiC, and MPO by RSM design.

• Investigation of thermal decomposition kinetics with the new PID system by using ANN.

• Physical and chemical characterization of BHNC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydoğmuş, E. Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN. Biomass Conv. Bioref. 12, 4799–4816 (2022). https://doi.org/10.1007/s13399-022-02403-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02403-6

Keywords

Navigation