Skip to main content
Log in

Optimization of cultural condition of Bacillus sp. MZ540316: improve biodegradation efficiency of lipopeptide biosurfactant against polyethylene

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Bacillus sp. MZ540316 was explored as new bacterial strain for production of lipopeptide biosurfactant with biodegradation efficiency against polyethylene polymers. In this study, the improved yield of biosurfactant was observed after optimizing its fermentative conditions using response surface methodology. The screening of significant nutrient media component was initially done by optimizing media components using classical methodology on the basis of emulsification index and surface tension. The optimum concentration for glucose, olive oil and yeast extract were obtained as 3 g/L, 2 g/L, and 1 g/L, respectively, after employing central composite design (CCD). This statistical methodology was further employed for estimation of optimum values for fermentative conditions with pH (7.5), fermentation period (4 days), agitation speed (150 rpm), temperature (35 °C), inoculum age (16 h), and inoculum size (2%). The yield of lipopeptide biosurfactant was improved with 1.42-fold higher after optimizing media component and culture condition. The suitable kinetic model was designed after studying growth kinetic and production kinetic profile under optimized fermentative conditions. The non-growth-associated behavior for production of biosurfactant would enable us to design mathematic model for cell growth kinetic and production kinetic using logistic equation and Luedeking-Piret equation, respectively. This isolate showed higher biodegradation efficiency against low density polyethylene polymer with maximum weight loss (14.33%) in compare to weight loss of high-density polyethylene pellets (10.86%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol 5:8–19

    Google Scholar 

  2. Strong AB (2006) Plastics: materials and processing. Prentice Hall

    Google Scholar 

  3. Wang Z, Gao J, Dai H, Zhao Y, Li D, Duan W, Guo Y (2021) Microplastics affect the ammonia`oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. J Hazar Mater 409:124981. https://doi.org/10.1016/j.jhazmat.2020.124981

    Article  Google Scholar 

  4. Ali I, Cheng Q, Ding T, Yiguang Q, Yuechao Z, Sun H, Peng C, Naz I, Li J, Liu J (2021) Micro-and nanoplastics in the environment: Occurrence, detection, characterization and toxicity–A critical review. J Clean Prod 127863.https://doi.org/10.1016/j.jclepro.2021.127863

  5. Ali SS, Qazi IA, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manag 5:44–53. https://doi.org/10.1016/j.enmm.2016.01.001

    Article  Google Scholar 

  6. Sharma J, Gurung T, Upadhyay A, Nandy K, Agnihotri P, Mitra AK (2014) Isolation and characterization of plastic degrading bacteria from soil collected from the dumping grounds of an industrial area. Int J Adv Innov Res 3:225–232

    Google Scholar 

  7. Bardají DKR, Furlan JPR, Stehling EG (2019) Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 201:699–704. https://doi.org/10.1007/s00203-019-01637-9

    Article  Google Scholar 

  8. Sharma A, Sharma A (2004) Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri. http://hdl.handle.net/123456789/5441

  9. Deepika S, Jaya MR (2015) Biodegradation of low density polyethylene by microorganisms from garbage soil. J Exp Biol Agric Sci 3:1–5

    Google Scholar 

  10. Fuhs GW (1961) Der mikrobielle Abbau von Kohlenwasserstoffen. Arch Mikrobiol 39:374–422. https://doi.org/10.1007/BF00411776

    Article  Google Scholar 

  11. Raziyafathima M, Praseetha PK, Rimal Isaac RS (2016) Microbial degradation of plastic waste: a review. J Pharm Chem Biol Sci 4:231–242

    Google Scholar 

  12. Gorsek A, Zajsek K (2010) Influence of temperature variations on ethanol production by kefir grains-mathematical model development. Chem Eng Trans 20:181–186. https://doi.org/10.3303/CET1020031

    Article  Google Scholar 

  13. Santos AS, Sampaio APW, Vasquez GS, Santa Anna LM, Pereira N, Freire DM (2002) Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. In Biotechnology for Fuels and Chemicals (pp. 1025–1035). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0119-9_83

  14. Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99:1157–1164. https://doi.org/10.1016/j.biortech.2007.02.026

    Article  Google Scholar 

  15. Elsayed EA, Farid MA, El-Enshasy HA (2019) Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnol 19:1–13. https://doi.org/10.1186/s12896-019-0546-2

    Article  Google Scholar 

  16. Kepli AN, Dailin DJ, Malek RA, Elsayed EA, Leng OM, El-Enshasy HA (2019) Medium optimization using response surface methodology for high cell mass production of Lactobacillus acidophilus

  17. Then C, Wai OK, Elsayed EA, Mustapha WZW, Othman NZ, Aziz R, Wadaan M, El Enshsay HA (2016) Comparison between classical and statistical medium optimization approaches for high cell mass production of Azotobactervinelandii

  18. Guo F, Li X, Zhao J, Li G, Gao P, Han X (2019) Optimizing culture conditions by statistical approach to enhance production of pectinase from Bacillus sp. Y1Biomed Res Int. https://doi.org/10.1155/2019/8146948

  19. El Enshasy HA, Elsayed EA, Suhaimi N, Abd Malek R, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18:1–13. https://doi.org/10.1186/s12896-018-0481-7

    Article  Google Scholar 

  20. Huang X, Zhang X, Huang Y, Xu X (2020) Optimization of media composition for enhancing tetracycline degradation by Trichosporonmycotoxinivorans XPY-10 using response surface methodology. Environ Technol 1-7. https://doi.org/10.1080/09593330.2020.1754472

  21. Yaraguppi DA, Bagewadi ZK, Muddapur UM, Mulla SI (2020) Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2. J Pet Explor Prod Technol 10:2483–2499. https://doi.org/10.1007/s13202-020-00866-9

    Article  Google Scholar 

  22. Hippolyte MT, Augustin M, Hervé TM, Robert N, Devappa S (2018) Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. Bioresour Bioprocess 5:1–16. https://doi.org/10.1186/s40643-018-0234-4

    Article  Google Scholar 

  23. Nehal N, Singh P (2021) Role of nanotechnology for improving properties of biosurfactant from newly isolated bacterial strains from Rajasthan. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2021.05.682

  24. Shoeb E, Ahmed N, Akhter J, Badar U, Siddiqui K, Ansari F, Waqar M, Imtia S, Akhtar N, Qua S, Baig R (2015) Screening and characterization of biosurfactant-producing bacteria isolated from the Arabian Sea coast of Karachi. Turk J Biol 39:210–216

    Article  Google Scholar 

  25. Suwansukho P, Rukachisirikul V, Kawai F (2008) Production and applications of biosurfactant from Bacillus subtilis MUV4. Songklanakarin J SciTechnol 30

  26. Mnif I, Ellouze-Chaabouni S, Ghribi D (2013) Optimization of inocula conditions for enhanced biosurfactant production by Bacillus subtilis SPB1, in submerged culture, using Box-Behnken design. Prob Antimicrob Prot 5:92–98. https://doi.org/10.1007/s12602-012-9113-z

    Article  Google Scholar 

  27. Zhang YIMIN, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282. https://doi.org/10.1128/aem.58.10.3276-3282.1992

    Article  Google Scholar 

  28. Kasture MB, Patel P, Prabhune AA, Ramana CV, Kulkarni AA, Prasad BLV (2008) Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles. J Chem Sci 120:515–520. https://doi.org/10.1007/s12039-008-0080-6

    Article  Google Scholar 

  29. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  30. Feignier C, Besson F, Michel G (1995) Studies on lipopeptide biosynthesis by Bacillus subtilis: isolation and characterization of iturin−, surfactin+ mutants. FEMS Microbiol Lett 127(1–2):11–15

    Google Scholar 

  31. Bradford MM (1976) Anal Biochem 72:248–254

    Article  Google Scholar 

  32. Sharafi H, Abdoli M, Hajfarajollah H, Samie N, Alidoust L, Abbasi H, Fooladi J, Zahiri HS, Noghabi KA (2014) First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site. Appl Biochem Biotechnol 173:1236–1249. https://doi.org/10.1007/s12010-014-0928-9

    Article  Google Scholar 

  33. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595. https://doi.org/10.1016/j.biortech.2007.04.020

    Article  Google Scholar 

  34. Pal MP, Vaidya BK, Desai KM, Joshi RM, Nene SN, Kulkarni BD (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotechnol 36:747–756. https://doi.org/10.1007/s10295-009-0547-6

    Article  Google Scholar 

  35. Cruz MISD, Thongsai N, de Luna MDG, In I, Paoprasert P (2019) Preparation of highly photoluminescent carbon dots from polyurethane: optimization using response surface methodology and selective detection of silver (I) ion. Colloids Surf A: Physicochem Eng Asp 568:184–194. https://doi.org/10.1016/j.colsurfa.2019.02.022

    Article  Google Scholar 

  36. Gu XB, Zheng ZM, Yu HQ, Wang J, Liang FL, Liu RL (2005) Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biochem 40:3196–3201. https://doi.org/10.1016/j.procbio.2005.02.011

    Article  Google Scholar 

  37. Kumar AP, Janardhan A, Radha S, Viswanath B, Narasimha G (2015) Statistical approach to optimize production of biosurfactant by Pseudomonas aeruginosa 2297. 3. Biotech 5:71–79. https://doi.org/10.1007/s13205-014-0203-3

    Article  Google Scholar 

  38. Shuler ML, Kargi F (2003) A text book of bioprocess engineering basic concepts, chapter 6

  39. Singh P, Shera SS, Banik J, Banik RM (2013) Optimization of cultural conditions using response surface methodology versus artificial neural network and modeling of L-glutaminase production by Bacillus cereus MTCC 1305. Bioresour Technol 137:261–269. https://doi.org/10.1016/j.biortech.2013.03.086

    Article  Google Scholar 

  40. Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R (2006) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B: Biointerf 49:79–86. https://doi.org/10.1016/j.colsurfb.2006.03.003

    Article  Google Scholar 

  41. Ahmad Z, Zhang X, Imran M, Zhong H, Andleeb S, Zulekha R, Liu G, Ahmad I, Coulon F (2021) Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. Ecotoxicol Environ Saf 207:111514. https://doi.org/10.1016/j.ecoenv.2020.111514

  42. Luedeking R, Piret EL (2000) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol Bioeng 67:636–644. https://doi.org/10.1002/jbmte.390010406

    Article  Google Scholar 

  43. Awasthi S, Srivastava P, Singh P, Tiwary D, Mishra PK (2017) Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 7:1–10. https://doi.org/10.1007/s13205-017-0959-3

  44. Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–633

    Google Scholar 

  45. Vimala PP, Mathew L (2016) Biodegradation of Polyethylene using Bacillus subtilis. Proc Technol 24:232–239. https://doi.org/10.1016/j.protcy.2016.05.031

    Article  Google Scholar 

  46. Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerfaces 79:174–183. https://doi.org/10.1016/j.colsurfb.2010.03.050

    Article  Google Scholar 

  47. Aparna A, Srinikethan G, Hedge S (2011) Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. Int Proc Chem Biol Environ Eng 6:71–75

    Google Scholar 

  48. Jain RM, Mody K, Joshi N, Mishra A, Jha B (2013) Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int J Biol Macromol 62:52–58. https://doi.org/10.1016/j.ijbiomac.2013.08.030

    Article  Google Scholar 

  49. Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47. https://doi.org/10.1016/j.bcab.2015.11.006

    Article  Google Scholar 

  50. Fernandes PL, Rodrigues EM, Paiva FR, Ayupe BAL, McInerney MJ, Tótola MR (2016) Biosurfactant, solvents and polymer production by Bacillus subtilis RI4914 and their application for enhanced oil recovery. Fuel 180:551–557. https://doi.org/10.1016/j.fuel.2016.04.080

    Article  Google Scholar 

  51. Heryani H, Putra MD (2017) Kinetic study and modeling of biosurfactant production using Bacillus sp. Electron J Biotechnol 27:49–54. https://doi.org/10.1016/j.ejbt.2017.03.005

    Article  Google Scholar 

  52. Selvam K, Senthilkumar B, Selvankumar T (2021) Optimization of low-cost biosurfactant produced by Bacillus subtilis SASCBT01 and their environmental remediation potential. Lett Appl Microbiol 72:74–81. https://doi.org/10.1111/lam.13394

    Article  Google Scholar 

  53. Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int Biodeterior Biodegradation 61:203–213. https://doi.org/10.1016/j.ibiod.2007.07.011

    Article  Google Scholar 

  54. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211. https://doi.org/10.1111/j.1472-765X.2010.02883.x

    Article  Google Scholar 

  55. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Ghobadi Z (2010) Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chem Eng J 163:188–194. https://doi.org/10.1016/j.cej.2010.06.044

    Article  Google Scholar 

  56. Phulpoto IA, Yu Z, Hu B, Wang Y, Ndayisenga F, Li J, Liang H, Qazi MA (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb Cell Fact 19:1–12. https://doi.org/10.1186/s12934-020-01402-4

    Article  Google Scholar 

  57. Medeot DB, Bertorello-Cuenca M, Liaudat JP, Alvarez F, Flores-Cáceres ML, Jofré E (2017) Improvement of biomass and cyclic lipopeptides production in Bacillus amyloliquefaciens MEP218 by modifying carbon and nitrogen sources and ratios of the culture media. Biol Control 115:119–128. https://doi.org/10.1016/j.biocontrol.2017.10.002

    Article  Google Scholar 

  58. Mouafi FE, Elsoud MMA, Moharam ME (2016) Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol Rep 9:31–37. https://doi.org/10.1016/j.btre.2015.12.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the laboratory facilities of the Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India, providing facility to carry this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Singh.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

Regarding the publication of this article there will be no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehal, N., Singh, P. Optimization of cultural condition of Bacillus sp. MZ540316: improve biodegradation efficiency of lipopeptide biosurfactant against polyethylene. Biomass Conv. Bioref. 13, 15471–15487 (2023). https://doi.org/10.1007/s13399-021-02042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02042-3

Keywords

Navigation