Skip to main content
Log in

Treatment of motor oil-contaminated water via sorption onto natural organic lignocellulosic waste: thermodynamics, kinetics, isotherm, recycling, and reuse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Ipomoea batatas peel (IBP) is established as a viable lignocellulosic sorbent for wastewater treatment but has not been applied for the decontamination of oil-polluted water. This work reports for the first time the sorption of motor oil from water onto IBP as a natural eco-friendly sorbent. The FTIR spectra of IBP showed several functional groups desirable for efficient uptake of motor oil from water. SEM characterizations revealed an irregular and porous surface morphology, while EDX showed carbon (56.2%) and oxygen (39.0%) as major constituents of IBP sorbent. The BET surface area and pore characterizations of IBP revealed a surface of 5.774 m2/g, a pore volume of 0.00423 cm3/g, and an average pore diameter of 3.062 nm. The Langmuir model presented the best fit to the isotherm oil sorption analysis with a coefficient of determination (R2) of 0.9034 and a sum square error (SSE) of 0.0071. Kinetic modeling revealed that the process conformed to the intraparticle diffusion and pseudo-second-order model, while thermodynamics displayed a physical, endothermic, and feasible uptake of motor oil onto IBP. The oil sorption was found to be dominated by absorption mechanism and hydrophobic interactions. The motor oil-loaded IBP showed 96.2% oil desorption using petroleum ether as eluent. Besides, IBP exhibited efficient recycling and reuse for oil uptake with a decrease from 3.39 (initial uptake) to 2.82 g/g (fourth cycle). These investigations prove that IBP sorbent is a highly efficient biodegradable, eco-friendly, and reusable natural organic material for sequestration of motor oil from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rana A, Sudhaik A, Raizada P et al (2021) An overview on cellulose-supported semiconductor photocatalysts for water purification. Nanotechnol Environ Eng 6:40. https://doi.org/10.1007/s41204-021-00135-y

    Article  Google Scholar 

  2. Hariharan A, Harini V, Sandhya S, Rangabhashiyam S (2020) Waste Musa acuminata residue as a potential biosorbent for the removal of hexavalent chromium from synthetic wastewater. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01173-3

    Article  Google Scholar 

  3. Gurav R, Bhatia SK, Choi T-R et al (2021) Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids. Sci Total Environ 781:146636. https://doi.org/10.1016/j.scitotenv.2021.146636

    Article  Google Scholar 

  4. Shokry H, Elkady M, Salama E (2020) Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation. Sci Rep 10:10265. https://doi.org/10.1038/s41598-020-67231-y

    Article  Google Scholar 

  5. Ben Jmaa S, Kallel A (2019) Assessment of performance of Posidona oceanica (L.) as biosorbent for crude oil-spill cleanup in seawater. Biomed Res Int 2019:1–9. https://doi.org/10.1155/2019/6029654

    Article  Google Scholar 

  6. Tayeb AM, Farouq R, Mohamed OA, Tony MA (2020) Oil spill clean-up using combined sorbents: a comparative investigation and design aspects. Int J Environ Anal Chem 100:311–323. https://doi.org/10.1080/03067319.2019.1636976

    Article  Google Scholar 

  7. Selvasembian R, Gwenzi W, Chaukura N, Mthembu S (2021) Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. J Hazard Mater 417:125960. https://doi.org/10.1016/j.jhazmat.2021.125960

    Article  Google Scholar 

  8. Akpomie KG, Conradie J (2021) Enhanced surface properties, hydrophobicity, and sorption behavior of ZnO nanoparticle–impregnated biomass support for oil spill treatment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12451-6

    Article  Google Scholar 

  9. Eze SI, Akpomie KG, Ezeofor CC et al (2019) Remediation of oil spill polluted water from Niger Delta Nigeria by sorption onto ammonium sulfate modified Dialium guineense seed husk. Pet Sci Technol 37:1830–1838. https://doi.org/10.1080/10916466.2019.1608240

    Article  Google Scholar 

  10. Rajaković-Ognjanović V, Aleksić G, Rajaković L (2008) Governing factors for motor oil removal from water with different sorption materials. J Hazard Mater 154:558–563. https://doi.org/10.1016/j.jhazmat.2007.10.066

    Article  Google Scholar 

  11. Bandura L, Woszuk A, Kołodyńska D, Franus W (2017) Application of mineral sorbents for removal of petroleum substances: a review. Minerals 7:37. https://doi.org/10.3390/min7030037

    Article  Google Scholar 

  12. Zamparas M, Tzivras D, Dracopoulos V, Ioannides T (2020) Application of sorbents for oil spill cleanup focusing on natural-based modified materials: a review. Molecules 25:4522. https://doi.org/10.3390/molecules25194522

    Article  Google Scholar 

  13. Venkatanarasimhan S, Raghavachari D (2013) Epoxidized natural rubber–magnetite nanocomposites for oil spill recovery. J Mater Chem A 1:868–876. https://doi.org/10.1039/C2TA00445C

    Article  Google Scholar 

  14. Abdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S et al (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. J Environ Chem Eng 9:105530. https://doi.org/10.1016/j.jece.2021.105530

    Article  Google Scholar 

  15. Ani JU, Akpomie KG, Okoro UC et al (2020) Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl Water Sci 10:1–11. https://doi.org/10.1007/s13201-020-1149-8

    Article  Google Scholar 

  16. Doshi B, Sillanpää M, Kalliola S (2018) A review of bio-based materials for oil spill treatment. Water Res 135:262–277. https://doi.org/10.1016/j.watres.2018.02.034

    Article  Google Scholar 

  17. Dawodu FA, Abonyi CJ, Akpomie KG (2021) Feldspar-banana peel composite adsorbent for efficient crude oil removal from solution. Appl Water Sci 11:3. https://doi.org/10.1007/s13201-020-01335-8

    Article  Google Scholar 

  18. Akpomie KG, Conradie J (2021) Ultrasonic aided sorption of oil from oil-in-water emulsion onto oleophilic natural organic-silver nanocomposite. Chem Eng Res Des 165:12–24. https://doi.org/10.1016/j.cherd.2020.10.019

    Article  Google Scholar 

  19. Boateng LK, Mirshahghassemi S, Wu H et al (2021) Mechanistic study of oil adsorption onto PVP-coated magnetic nanoparticles: an integrated experimental and molecular dynamics study to inform remediation. Environ Sci Nano 8:485–492. https://doi.org/10.1039/D0EN00907E

    Article  Google Scholar 

  20. Gunarathne V, Rajapaksha AU, Vithanage M, et al (2020) Hydrometallurgical processes for heavy metals recovery from industrial sludges. Crit Rev Environ Sci Technol 1–41. https://doi.org/10.1080/10643389.2020.1847949

  21. Yao T, Zhang Y, Xiao Y et al (2016) The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite. J Mol Liq 218:611–614. https://doi.org/10.1016/j.molliq.2016.02.050

    Article  Google Scholar 

  22. Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Technol 45:1916–1945. https://doi.org/10.1080/10643389.2014.1001143

    Article  Google Scholar 

  23. Du W, Han X, Li Z et al (2015) Oil sorption behaviors of porous polydimethylsiloxane modified collagen fiber matrix. J Appl Polym Sci 132:42727. https://doi.org/10.1002/app.42727

    Article  Google Scholar 

  24. Abdelwahab O, Nasr SM, Thabet WM (2017) Palm fibers and modified palm fibers adsorbents for different oils. Alexandria Eng J 56:749–755. https://doi.org/10.1016/j.aej.2016.11.020

    Article  Google Scholar 

  25. Rangabhashiyam S, Vijayaraghavan K, Jawad AH et al (2021) Sustainable approach of batch and continuous biosorptive systems for praseodymium and thulium ions removal in mono and binary aqueous solutions. Environ Technol Innov 23:101581. https://doi.org/10.1016/j.eti.2021.101581

    Article  Google Scholar 

  26. Hussein NCM, S, Hidayati Othman N, Dollah A, et al (2019) Study of acid treated mixed sawdust as natural oil sorbent for oil spill. Mater Today Proc 19:1382–1389. https://doi.org/10.1016/j.matpr.2019.11.156

    Article  Google Scholar 

  27. Sayed SA, Zayed AM (2006) Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups. Desalination 194:90–100. https://doi.org/10.1016/j.desal.2005.10.027

    Article  Google Scholar 

  28. Razavi Z, Mirghaffari N, Rezaei B (2014) Adsorption of crude and engine oils from water using raw rice husk. Water Sci Technol 69:947–952. https://doi.org/10.2166/wst.2013.804

    Article  Google Scholar 

  29. Hoang AT, Le VV, Al-Tawaha ARMS et al (2018) An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup. Pet Sci Technol 36:361–370. https://doi.org/10.1080/10916466.2018.1425722

    Article  Google Scholar 

  30. Husseien M, Amer AA, El-Maghraby A, Taha NA (2009) Availability of barley straw application on oil spill clean up. Int J Environ Sci Technol 6:123–130. https://doi.org/10.1007/BF03326066

    Article  Google Scholar 

  31. Alaa El-Din G, Amer AA, Malsh G, Hussein M (2018) Study on the use of banana peels for oil spill removal. Alexandria Eng J 57:2061–2068. https://doi.org/10.1016/j.aej.2017.05.020

    Article  Google Scholar 

  32. Behnood R, Anvaripour B, Jaafarzadeh N, Farasati M (2016) Oil spill sorption using raw and acetylated sugarcane bagasse. J Cent South Univ 23:1618–1625. https://doi.org/10.1007/s11771-016-3216-8

    Article  Google Scholar 

  33. Asadpour R, Yavari S, Kamyab H et al (2021) Study of oil sorption behaviour of esterified oil palm empty fruit bunch (OPEFB) fibre and its kinetics and isotherm studies. Environ Technol Innov 22:101397. https://doi.org/10.1016/j.eti.2021.101397

    Article  Google Scholar 

  34. Nwadiogbu JO, Ajiwe VIE, Okoye PAC (2016) Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: equilibrium and kinetic studies. J Taibah Univ Sci 10:56–63. https://doi.org/10.1016/j.jtusci.2015.03.014

    Article  Google Scholar 

  35. Srinivasan A, Viraraghavan T (2008) Removal of oil by walnut shell media. Bioresour Technol 99:8217–8220. https://doi.org/10.1016/j.biortech.2008.03.072

    Article  Google Scholar 

  36. Eze SI, Akpomie KG, Ezeofor CC et al (2019) Isotherm and kinetic evaluation of Dialium guineense seed husk and its modified derivative as efficient sorbent for crude oil polluted water treatment. Water Conserv Sci Eng 4:21–31. https://doi.org/10.1007/s41101-019-00065-6

    Article  Google Scholar 

  37. Singh AK, Mishra S, Singh JK (2019) Underwater superoleophobic biomaterial based on waste potato peels for simultaneous separation of oil/water mixtures and dye adsorption. Cellulose 26:5497–5511. https://doi.org/10.1007/s10570-019-02458-1

    Article  Google Scholar 

  38. Chen X, Du G, Pizzi A, Xi X (2020) Superhydrophobic and superoleophilic fiber from waste bamboo processing residues for oil/water selective separation. J Wood Chem Technol 40:58–72. https://doi.org/10.1080/02773813.2019.1661483

    Article  Google Scholar 

  39. Zou J, Chai W, Liu X et al (2016) Magnetic pomelo peel as a new absorption material for oil-polluted water. Desalin Water Treat 57:12536–12545. https://doi.org/10.1080/19443994.2015.1049958

    Article  Google Scholar 

  40. Akpomie KG, Ezeofor CC, Ani JU, et al (2019) Equilibrium isotherms modeling of crude oil sorption from aqua mixture onto Codiaeum variegatum stem powder. Pet Sci Technol 37. https://doi.org/10.1080/10916466.2018.1547751

  41. Shin Y, Han KS, Arey BW, Bonheyo GT (2020) Cotton fiber-based sorbents for treating crude oil spills. ACS Omega 5:13894–13901. https://doi.org/10.1021/acsomega.0c01290

    Article  Google Scholar 

  42. Sayyad Amin J, Vared Abkenar M, Zendehboudi S (2015) Natural sorbent for oil spill cleanup from water surface: environmental implication. Ind Eng Chem Res 54:10615–10621. https://doi.org/10.1021/acs.iecr.5b01715

    Article  Google Scholar 

  43. Ooko Abong’ G, Muzhingi T, Wandayi Okoth M, et al (2020) Phytochemicals in leaves and roots of selected Kenyan orange fleshed sweet potato (OFSP) varieties. Int J Food Sci 2020:1–11. https://doi.org/10.1155/2020/3567972

    Article  Google Scholar 

  44. Ramírez DA, Gavilán C, Barreda C et al (2017) Characterizing the diversity of sweetpotato through growth parameters and leaf traits: precocity and light use efficiency as important ordination factors. South African J Bot 113:192–199. https://doi.org/10.1016/j.sajb.2017.08.009

    Article  Google Scholar 

  45. Sabzehmeidani MM, Mahnaee S, Ghaedi M et al (2021) Carbon based materials: a review of adsorbents for inorganic and organic compounds. Mater Adv 2:598–627. https://doi.org/10.1039/D0MA00087F

    Article  Google Scholar 

  46. Asemave K, Thaddeus L, Tarhemba PT (2021) Lignocellulosic-based sorbents: a review Sustain Chem 2:271–285. https://doi.org/10.3390/suschem2020016

    Article  Google Scholar 

  47. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A review Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    Article  Google Scholar 

  48. Yahya MD, Ihejirika CV, Iyaka YA et al (2020) Continuous sorption of chromium ions from simulated effluents using citric acid modified sweet potato peels. Niger J Technol Dev 17:47–54. https://doi.org/10.4314/njtd.v17i1.7

    Article  Google Scholar 

  49. Asuquo ED, Martin AD (2016) Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: characterisation, kinetic and isotherm studies. J Environ Chem Eng 4:4207–4228. https://doi.org/10.1016/j.jece.2016.09.024

    Article  Google Scholar 

  50. Rangabhashiyam S, Sayantani S, Balasubramanian P (2019) Assessment of hexavalent chromium biosorption using biodiesel extracted seeds of Jatropha sp., Ricinus sp. and Pongamia sp. Int J Environ Sci Technol 16:5707–5724. https://doi.org/10.1007/s13762-018-1951-0

    Article  Google Scholar 

  51. Eze SI, Akpomie KG, Ezekoye OM et al (2021) Antibiotic adsorption by acid enhanced Dialium guineense seed waste. Arab J Sci Eng 46:309–324. https://doi.org/10.1007/s13369-020-04771-5

    Article  Google Scholar 

  52. Akpomie KG, Conradie J (2020) Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arab J Chem 13:7115–7131. https://doi.org/10.1016/j.arabjc.2020.07.017

    Article  Google Scholar 

  53. Akpomie KG, Conradie J (2020) Biosorption and regeneration potentials of magnetite nanoparticle loaded Solanum tuberosum peel for celestine blue dye. Int J Phytoremediation 1–15. https://doi.org/10.1080/15226514.2020.1814198

  54. Zhao J, Boada R, Cibin G, Palet C (2021) Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci Total Environ 756:143816. https://doi.org/10.1016/j.scitotenv.2020.143816

    Article  Google Scholar 

  55. Bellahsen N, Varga G, Halyag N et al (2021) Pomegranate peel as a new low-cost adsorbent for ammonium removal. Int J Environ Sci Technol 18:711–722. https://doi.org/10.1007/s13762-020-02863-1

    Article  Google Scholar 

  56. Afolabi FO, Musonge P, Bakare BF (2021) Bio-sorption of a bi-solute system of copper and lead ions onto banana peels: characterization and optimization. J Environ Heal Sci Eng. https://doi.org/10.1007/s40201-021-00632-x

    Article  Google Scholar 

  57. Akpomie KG, Onyeabor CF, Ezeofor CC et al (2019) Natural aluminosilicate clay obtained from south-eastern Nigeria as potential sorbent for oil spill remediation. J African Earth Sci 155:118–123. https://doi.org/10.1016/j.jafrearsci.2019.04.013

    Article  Google Scholar 

  58. Saravanan P, Josephraj J, Thillainayagam BP, Ravindiran G (2021) Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01415-y

    Article  Google Scholar 

  59. Ang XW, Sethu VS, Andresen JM, Sivakumar M (2013) Copper(II) ion removal from aqueous solutions using biosorption technology: thermodynamic and SEM–EDX studies. Clean Technol Environ Policy 15:401–407. https://doi.org/10.1007/s10098-012-0523-0

    Article  Google Scholar 

  60. Imran M, Anwar K, Akram M et al (2019) Biosorption of Pb(II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies. Int J Phytoremediation 21:777–789. https://doi.org/10.1080/15226514.2019.1566880

    Article  Google Scholar 

  61. Bayomie OS, Kandeel H, Shoeib T et al (2020) Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci Rep 10:7824. https://doi.org/10.1038/s41598-020-64727-5

    Article  Google Scholar 

  62. Omorogie MO, Babalola JO, Unuabonah EI et al (2016) Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste. J Saudi Chem Soc 20:49–57. https://doi.org/10.1016/j.jscs.2012.09.017

    Article  Google Scholar 

  63. Garcia-Reyes RB, Rangel-Mendez JR (2010) Adsorption kinetics of chromium(III) ions on agro-waste materials. Bioresour Technol 101:8099–8108. https://doi.org/10.1016/j.biortech.2010.06.020

    Article  Google Scholar 

  64. Gedam AH, Dongre RS (2015) Adsorption characterization of Pb( <scp>ii</scp> ) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Adv 5:54188–54201. https://doi.org/10.1039/C5RA09899H

    Article  Google Scholar 

  65. Arami M, Limaee N, Mahmoodi N, Tabrizi N (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135:171–179. https://doi.org/10.1016/j.jhazmat.2005.11.044

    Article  Google Scholar 

  66. Akpomie KG, Conradie J (2020) Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Sci Rep 10. https://doi.org/10.1038/s41598-020-74254-y

  67. Amaku JF, Ogundare SA, Akpomie KG, Conradie J (2021) Enhanced sequestration of chromium (VI) onto spent self-indicating silica gels coated with Harpephyllum caffrum stem bark extract. Int J Environ Anal Chem 1 17. https://doi.org/10.1080/03067319.2021.1901893

  68. Akpomie KG, Ezeofor CC, Ani JU et al (2019) Equilibrium isotherms modeling of crude oil sorption from aqua mixture onto Codiaeum variegatum stem powder. Pet Sci Technol 37:329–336. https://doi.org/10.1080/10916466.2018.1547751

    Article  Google Scholar 

  69. El-Gendy NS, Nassar HN (2016) Study on the effectiveness of spent waste sugarcane bagasse for adsorption of different petroleum hydrocarbons water pollutants: kinetic and equilibrium isotherm. Desalin Water Treat 57:5514–5528. https://doi.org/10.1080/19443994.2015.1004598

    Article  Google Scholar 

  70. Akpomie KG, Ezeofor CC, Olikagu CS et al (2018) Abstraction and regeneration potential of temperature-enhanced rice husk montmorillonite combo for oil spill. Environ Sci Pollut Res 25:34711–34719. https://doi.org/10.1007/s11356-018-3425-9

    Article  Google Scholar 

  71. AlAmeri K, Giwa A, Yousef L et al (2019) Sorption and removal of crude oil spills from seawater using peat-derived biochar: an optimization study. J Environ Manage 250:109465. https://doi.org/10.1016/j.jenvman.2019.109465

    Article  Google Scholar 

  72. Dawodu FA, Akpomie KG (2014) Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J Mater Res Technol 3. https://doi.org/10.1016/j.jmrt.2014.03.002

  73. Chukwuemeka-Okorie HO, Ekemezie PN, Akpomie KG, Olikagu CS (2018) Calcined corncob-kaolinite combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption. Front Chem 6:1–13. https://doi.org/10.3389/fchem.2018.00273

    Article  Google Scholar 

  74. Songsaeng S, Thamyongkit P, Poompradub S (2019) Natural rubber/reduced-graphene oxide composite materials: morphological and oil adsorption properties for treatment of oil spills. J Adv Res 20:79–89. https://doi.org/10.1016/j.jare.2019.05.007

    Article  Google Scholar 

  75. Ogunleye DT, Akpotu SO, Moodley B (2020) Adsorption of sulfamethoxazole and reactive blue 19 using graphene oxide modified with imidazolium based ionic liquid. Environ Technol Innov 17:100616. https://doi.org/10.1016/j.eti.2020.100616

    Article  Google Scholar 

  76. Elanchezhiyan SS, Prabhu SM, Meenakshi S (2018) Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: role of metal ions and their mechanism in oil removal. Int J Biol Macromol 112:294–305. https://doi.org/10.1016/j.ijbiomac.2018.01.118

    Article  Google Scholar 

  77. Abdulkareem A, Popelka A, Sobolčiak P et al (2021) The separation of emulsified water/oil mixtures through adsorption on plasma-treated polyethylene powder. Materials (Basel) 14:1086. https://doi.org/10.3390/ma14051086

    Article  Google Scholar 

  78. Dawodu FA, Obioha UN, Akpomie K (2018) Removal of crude oil from aqueous solution by zinc chloride modified Dioscorea rotundata peel carbon: equilibrium, kinetic and intraparticle diffusivity. Pet Coal 60:985–994

    Google Scholar 

  79. Cai L, Zhang Y, Zhou Y et al (2019) Effective adsorption of diesel oil by crab-shell-derived biochar nanomaterials. Materials (Basel) 12:236. https://doi.org/10.3390/ma12020236

    Article  Google Scholar 

  80. Mottaghi H, Mohammadi Z, Abbasi M et al (2021) Experimental investigation of crude oil removal from water using polymer adsorbent. J Water Process Eng 40:101959. https://doi.org/10.1016/j.jwpe.2021.101959

    Article  Google Scholar 

  81. Thanikaivelan P, Narayanan NT, Pradhan BK, Ajayan PM (2012) Collagen based magnetic nanocomposites for oil removal applications. Sci Rep 2:230. https://doi.org/10.1038/srep00230

    Article  Google Scholar 

  82. Onwuka JC, Agbaji EB, Ajibola VO, Okibe FG (2018) Treatment of crude oil-contaminated water with chemically modified natural fiber. Appl Water Sci 8:86. https://doi.org/10.1007/s13201-018-0727-5

    Article  Google Scholar 

  83. Peng D, Li H, Li W-J, Zheng L (2021) Biosorbent with superhydrophobicity and superoleophilicity for spilled oil removal. Ecotoxicol Environ Saf 209:111803. https://doi.org/10.1016/j.ecoenv.2020.111803

    Article  Google Scholar 

  84. Cao X, Yang G, Wei S, Han H (2011) Sorption of heavy oil onto Jiaozhou Bay sediment. Mar Pollut Bull 62:741–746. https://doi.org/10.1016/j.marpolbul.2011.01.016

    Article  Google Scholar 

  85. Boleydei H, Mirghaffari N, Farhadian O (2018) Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass. Environ Sci Pollut Res 25:21024–21035. https://doi.org/10.1007/s11356-018-2281-y

    Article  Google Scholar 

  86. Soliman EM, Ahmed SA, Fadl AA (2020) Adsorptive removal of oil spill from sea water surface using magnetic wood sawdust as a novel nano-composite synthesized via microwave approach. J Environ Heal Sci Eng 18:79–90. https://doi.org/10.1007/s40201-019-00440-4

    Article  Google Scholar 

  87. Razzaq S, Akhtar M, Zulfiqar S et al (2021) Adsorption removal of Congo red onto L-cysteine/rGO/PANI nanocomposite: equilibrium, kinetics and thermodynamic studies. J Taibah Univ Sci 15:50–62. https://doi.org/10.1080/16583655.2021.1876351

    Article  Google Scholar 

  88. Zhu X, Wang X, Liu Y et al (2019) Efficient adsorption of oil in water by hydrophobic nonwoven fabrics coated with cross-linked polydivinylbenzene fibers. J Chem Technol Biotechnol 94:128–135. https://doi.org/10.1002/jctb.5753

    Article  Google Scholar 

  89. Nessim RB, Bassiouny AR, Zaki HR et al (2011) Biosorption of lead and cadmium using marine algae. Chem Ecol 27:579–594. https://doi.org/10.1080/02757540.2011.607439

    Article  Google Scholar 

  90. Pintor AMA, Ferreira CIA, Pereira JPC et al (2015) Oil desorption and recovery from cork sorbents. J Environ Chem Eng 3:2917–2923. https://doi.org/10.1016/j.jece.2015.10.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kovo G. Akpomie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpomie, K.G., Conradie, J. Treatment of motor oil-contaminated water via sorption onto natural organic lignocellulosic waste: thermodynamics, kinetics, isotherm, recycling, and reuse. Biomass Conv. Bioref. 13, 10285–10297 (2023). https://doi.org/10.1007/s13399-021-02009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02009-4

Keywords

Navigation