Skip to main content
Log in

Enhancement of biogas production using SnO2 nanoparticle-doped mica catalyst

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Different additives are used to enhance the microbial activity and ensure the suitable environment for anaerobic microorganisms in anaerobic digestion (AD) process. This study aims to investigate biogas production activity by adding mica particles (MP) and SnO2 nanoparticles (NPs)-doped mica (MSnO2) preparing by co-precipitation. The morphological and structural investigations of particles prove that the SnO2 NPs have been successfully embedded on mica surface. The deposition of SnO2 on the mica surfaces contributes the catalytic performance which in turn improves biogas production. The concentration of MP and MSnO2 was adjusted to be 0.03 mg/L and 0.06 mg/L for the biogas production experiment. In batch experiments, the highest biogas production, biogas yield, and methane yield were obtained at MSnO2-1 (0.03 mg/L) with 6890.2 mL, 245.4 ml/gVS, and 162.3 mL CH4/gVS, respectively. The addition of 0.03 mg/L MSnO2 increased biogas yield by 18.1% and methane yield by 33%, in the light of the data acquired from this experimental study that MSnO2 and pristine mica can be used effectively to enhance biogas production from cattle manure (CM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang K, Yun S, Xing T et al (2021) Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: focusing on kinetic models for biogas production and digestate utilization. Bioresour Technol 323:124571. https://doi.org/10.1016/j.biortech.2020.124571

    Article  Google Scholar 

  2. Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the anaerobic digestion process. Biomethanation II 82:1–33. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  3. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  Google Scholar 

  4. Abbas Y, Yun S, Wang Z et al (2021) Recent advances in bio-based carbon materials for anaerobic digestion: a review. Renew Sustain Energy Rev 135:110378. https://doi.org/10.1016/j.rser.2020.110378

    Article  Google Scholar 

  5. Jia B, Yun S, Shi J et al (2020) Enhanced anaerobic mono- and co-digestion under mesophilic condition: focusing on the magnetic field and Ti-sphere core–shell structured additives. Bioresour Technol 310:123450. https://doi.org/10.1016/j.biortech.2020.123450

    Article  Google Scholar 

  6. Abbas Y, Yun S, Wang K et al (2021) Static-magnetic-field coupled with fly-ash accelerant: a powerful strategy to significantly enhance the mesophilic anaerobic-co-digestion. Bioresour Technol 327:124793. https://doi.org/10.1016/j.biortech.2021.124793

    Article  Google Scholar 

  7. Ye M, Liu J, Ma C et al (2018) Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review. J Clean Prod 192:316–326. https://doi.org/10.1016/j.jclepro.2018.04.244

    Article  Google Scholar 

  8. Kim M, Li D, Choi O et al (2017) Effects of supplement additives on anaerobic biogas production. Korean J Chem Eng 34:2678–2685. https://doi.org/10.1007/s11814-017-0175-1

    Article  Google Scholar 

  9. Barua S, Zakaria BS, Lin L, Dhar BR (2019) Magnetite doped granular activated carbon as an additive for high-performance anaerobic digestion. Mater Sci Energy Technol 2:377–384. https://doi.org/10.1016/j.mset.2019.04.002

    Article  Google Scholar 

  10. Weide T, Baquero CD, Schomaker M et al (2020) Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure). Biomass Bioenerg 132:105442. https://doi.org/10.1016/j.biombioe.2019.105442

    Article  Google Scholar 

  11. Yun S, Zhang C, Wang Y et al (2019) Synergistic effects of Fe salts and composite additives on anaerobic digestion of dairy manure. Int Biodeterior Biodegrad 136:82–90. https://doi.org/10.1016/j.ibiod.2018.10.011

    Article  Google Scholar 

  12. Canan A, Calhan R, Ozkaymak M (2021) Investigation of the effects of different slags as accelerant on anaerobic digestion and methane yield. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01340-0

    Article  Google Scholar 

  13. Facchin V, Cavinato C, Fatone F et al (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77. https://doi.org/10.1016/j.bej.2012.10.004

    Article  Google Scholar 

  14. Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol 102:10305–10311. https://doi.org/10.1016/j.biortech.2011.08.100

    Article  Google Scholar 

  15. Hassanein A, Lansing S, Tikekar R (2019) Impact of metal nanoparticles on biogas production from poultry litter. Bioresour Technol 200–206. https://doi.org/10.1016/j.biortech.2018.12.048

  16. Chen J, Yun S, Shi J et al (2020) Role of biomass-derived carbon-based composite accelerants in enhanced anaerobic digestion: focusing on biogas yield, fertilizer utilization, and density functional theory calculations. Bioresour Technol 307:123204. https://doi.org/10.1016/j.biortech.2020.123204

    Article  Google Scholar 

  17. Wang C, Yun S, Xu H et al (2020) Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: an efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram Int 46:3292–3303. https://doi.org/10.1016/j.ceramint.2019.10.035

    Article  Google Scholar 

  18. Wang Z, Yun S, Shi J et al (2020) Critical evidence for direct interspecies electron transfer with tungsten-based accelerants: an experimental and theoretical investigation. Bioresour Technol 311:123519. https://doi.org/10.1016/j.biortech.2020.123519

    Article  Google Scholar 

  19. Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45:5612–5620. https://doi.org/10.1016/j.watres.2011.08.022

    Article  Google Scholar 

  20. Abdelsalam E, Samer M, Attia YA et al (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598. https://doi.org/10.1016/j.renene.2015.10.053

    Article  Google Scholar 

  21. Abdelwahab TAM, Mohanty MK, Sahoo PK, Behera D (2021) Metal nanoparticle mixtures to improve the biogas yield of cattle manure. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01286-3

    Article  Google Scholar 

  22. Štengl V, Šubrt J, Bakardjieva S et al (2003) The preparation and characteristics of pigments based on mica coated with metal oxides. Dye Pigment 58:239–244. https://doi.org/10.1016/S0143-7208(03)00086-X

    Article  Google Scholar 

  23. TenórioCavalcante PM, Dondi M, Guarini G et al (2007) Ceramic application of mica titania pearlescent pigments. Dye Pigment 74:1–8. https://doi.org/10.1016/j.dyepig.2006.01.026

    Article  Google Scholar 

  24. Tohidifar MR, Taheri-Nassaj E, Alizadeh P (2008) Optimization of the synthesis of a nano-sized mica-hematite pearlescent pigment. Mater Chem Phys 109:137–142. https://doi.org/10.1016/j.matchemphys.2007.11.004

    Article  Google Scholar 

  25. Su CY, Tang HZ, De ZhuG et al (2014) The optical properties and sunscreen application of spherical h-BN-TiO2/mica composite powder. Ceram Int 40:4691–4696. https://doi.org/10.1016/j.ceramint.2013.09.010

    Article  Google Scholar 

  26. Akinay Y, Nuri Akkuş I (2020) Synthesis and characterization of the pearlescent pigments based on mica deposited with SiO2, AlN and TiO2: first report of its dielectric properties. Ceram Int 46:17735–17740. https://doi.org/10.1016/j.ceramint.2020.04.078

    Article  Google Scholar 

  27. Akınay Y (2020) Synthesis and dielectric properties of magnesium silicate hydrate deposited with SnO2. Sakarya Univ J Sci 24(3):455–459. https://doi.org/10.16984/saufenbilder.659958

    Article  Google Scholar 

  28. Naeem A, Wali Khan I, Farooq M et al (2021) Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst. Bioresour Technol 328:124831. https://doi.org/10.1016/j.biortech.2021.124831

    Article  Google Scholar 

  29. Guan W, Tsang CW, Lin CSK et al (2019) A review on high catalytic efficiency of solid acid catalysts for lignin valorization. Bioresour Technol 298:122432. https://doi.org/10.1016/j.biortech.2019.122432

    Article  Google Scholar 

  30. Rostrup-Nielsen JR (1984) Catalytic steam reforming. Catal. Sci Technol 5:1–117. https://doi.org/10.1007/978-3-642-93247-2_1

    Article  Google Scholar 

  31. Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164. https://doi.org/10.1016/S0920-5861(00)00455-7

    Article  Google Scholar 

  32. Serrano-Lotina A, Daza L (2013) Highly stable and active catalyst for hydrogen production from biogas. J Power Sources 238:81–86. https://doi.org/10.1016/j.jpowsour.2013.03.067

    Article  Google Scholar 

  33. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

  34. Naushad M, Ahamad T, Sharma G et al (2016) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316. https://doi.org/10.1016/j.cej.2016.04.084

    Article  Google Scholar 

  35. Li X, Yun S, Zhang C et al (2018) Application of nano-scale transition metal carbides as accelerants in anaerobic digestion. Int J Hydrogen Energy 43:1926–1936. https://doi.org/10.1016/j.ijhydene.2017.11.092

    Article  Google Scholar 

  36. KökdemirÜnşar E, Perendeci NA (2018) What kind of effects do Fe2O3 and Al2O3 nanoparticles have on anaerobic digestion, inhibition or enhancement? Chemosphere 211:726–735. https://doi.org/10.1016/j.chemosphere.2018.08.014

    Article  Google Scholar 

  37. Juntupally S, Begum S, Allu SK et al (2017) Relative evaluation of micronutrients (MN) and its respective nanoparticles (NPs) as additives for the enhanced methane generation. Bioresour Technol 238:290–295. https://doi.org/10.1016/j.biortech.2017.04.049

    Article  Google Scholar 

  38. De WY, Ma CL, Sun XD, De LH (2001) Synthesis of supramolecular-templated mesostructured tin oxide. Inorg Chem Commun 4:223–226. https://doi.org/10.1016/S1387-7003(01)00149-6

    Article  Google Scholar 

  39. Ghofrani-Isfahani P, Baniamerian H, Tsapekos P et al (2020) Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy 191:116580. https://doi.org/10.1016/j.energy.2019.116580

    Article  Google Scholar 

  40. Abdelsalam E, Samer M, Attia YA et al (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119. https://doi.org/10.1016/j.enconman.2016.05.051

    Article  Google Scholar 

  41. Aguilar-Moreno GS, Navarro-Cerón E, Velázquez-Hernández A et al (2020) Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles. Renew Energy 147:204–213. https://doi.org/10.1016/j.renene.2019.08.111

    Article  Google Scholar 

  42. Hassanein A, Lansing S, Tikekar R (2019) Impact of metal nanoparticles on biogas production from poultry litter. Bioresour Technol 275:200–206. https://doi.org/10.1016/j.biortech.2018.12.048

    Article  Google Scholar 

  43. Tian T, Qiao S, Li X et al (2017) Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour Technol 224:41–47. https://doi.org/10.1016/j.biortech.2016.10.058

    Article  Google Scholar 

  44. Xing T, Yun S, Li B et al (2021) Coconut-shell-derived bio-based carbon enhanced microbial electrolysis cells for upgrading anaerobic co-digestion of cow manure and aloe peel waste. Bioresour Technol 338:125520. https://doi.org/10.1016/j.biortech.2021.125520

    Article  Google Scholar 

  45. Xu H, Yun S, Wang C et al (2020) Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite. Bioresour Technol 301:122753. https://doi.org/10.1016/j.biortech.2020.122753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Çalhan.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaskun, S., Çalhan, R. & Akinay, Y. Enhancement of biogas production using SnO2 nanoparticle-doped mica catalyst. Biomass Conv. Bioref. 13, 7239–7246 (2023). https://doi.org/10.1007/s13399-021-01983-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01983-z

Keywords

Navigation