Skip to main content

Advertisement

Log in

Green synthesis of microalgal biomass-silver nanoparticle composite showing antimicrobial activity and heterogenous catalysis of nitrophenol reduction

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, we have demonstrated an integrated approach for utilization of microalga Scenedesmus sp. for fabrication of catalytic and antimicrobial silver nanoparticle composite. The algal biomass was harvested from an open raceway pond of 30,000 L scale used for CO2 sequestration. The dried biomass served as a green, nontoxic, reducing and immobilizing agent for synthesis of silver nanoparticles, producing biomass-silver nanoparticle composite. ICP-OES was used to monitor the uptake of silver ions by biomass and subsequent formation of nanoparticles. The composite was calcined at 400 °C to fix the nanoparticles and prevent fouling. The calcined biomass-silver nanoparticle (CB-AgNP) composite was characterized using FESEM-EDAX, XRD and TGA. The CB-AgNP composite was used for the first time, as a heterogenous catalyst for reduction of a prominent industrial pollutant, p-nitrophenol. The reduction was carried out in the presence of NaBH4 in aqueous medium under ambient conditions. Batch experiments were conducted to evaluate the effect of calcination temperature, load of material and its reusability, on the catalytic efficiency of material. It was found that as low as 5 mg mL−1 CB-AgNP material reduced more than 80% and 95% of p-nitrophenol within 1 min and 15 min of exposure, respectively. Rate of PNP reduction was 0.60 mg L−1 min−1. The composite was easily recovered and reused for continuous batches of p-nitrophenol reduction. The efficiency of catalysis decreased with ten cycles of reuse; however, with an intermittent overnight water wash, the material regained its catalytic activity. Furthermore, the CB-AgNP composite also possessed excellent antimicrobial activity against pathogenic microbes. Two strains each of gram + ve and gram − ve bacteria and three strains of pathogenic fungi were used in the antimicrobial studies using well diffusion method and it was found to be active against all the microbes. The CB-AgNP composite is a potential candidate for a reusable heterogenous catalyst for designing continuous flow system for remediation of industrial effluents rich in p-nitrophenol. Its efficacy against common pathogenic bacteria and fungi can be harnessed for simultaneous antimicrobial treatment of the water. Moreover, this antimicrobial property will further inhibit the biofouling and eventual clogging of the material used in a packed column when used for water treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta A, Tandon M, Kaur A (2020) Nanotechnol Environ Eng 5:27. https://doi.org/10.1007/s41204-020-00092-y

    Article  Google Scholar 

  2. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Materials (Basel) 8(11):7278–7308. https://doi.org/10.3390/ma8115377

    Article  Google Scholar 

  3. Duan H, Wang D, Li Y (2015) Chem Soc Rev 44:5778–5792

    Article  Google Scholar 

  4. Dahoumane SA, Mechouet M, Wijesekera K, Filipe CDM, Sicard C, Bazylinski D, Jeffryes C (2017) Green Chem 19:552–587

    Article  Google Scholar 

  5. Khan MI, Shin JH, Kim JD (2018) Microb Cell Fact 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  6. Das P, Aziz SS, Obbard J (2011) Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energy 36:2524–2528

    Article  Google Scholar 

  7. Arsiya F, Sayadi MH, Sobhani S (2017) J Water Environ Nanotechnol 2(3):166–173

    Google Scholar 

  8. Jena J, Pradhan N, Aishvarya V, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) J Appl Phycol 27:2251–2260

    Article  Google Scholar 

  9. Khanna P, Kaur A, Goyal D (2019) J Microbiol Methods 163:105656. https://doi.org/10.1016/j.mimet.2019.105656

    Article  Google Scholar 

  10. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Phytochemistry 31(10):3345–3348. https://doi.org/10.1016/0031-9422(92)83682-O

    Article  Google Scholar 

  11. Jena J, Nayak M, Panda HS, Pradhan N, Sarika C, P&a, P, Rao VSK, Prasad BN, Shukla LB (2012) World Environ 2(1), 11 - 16. https://doi.org/10.5923/J.ENV.20120201.03

  12. Rhee G (1973) J Phycol 9:495–506. https://doi.org/10.1111/j.1529-8817.1973.tb04126.x

    Article  Google Scholar 

  13. Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Bioresour Technol. 143:369–377. https://doi.org/10.1016/j.biortech.2013.06.010

    Article  Google Scholar 

  14. Ho SH, Chen WM, Chang JS (2010) Bioresour Technol 101(22):8725–8730. https://doi.org/10.1016/j.biortech.2010.06.112

    Article  Google Scholar 

  15. Nayak M, Rath SS, Thirunavoukkarasu M, Panda PK, Mishra BK, Mohanty RC (2013) J Microbiol Biotechnol 28(23(9)):1260–1268. https://doi.org/10.4014/jmb.1302.02044

    Article  Google Scholar 

  16. Pradhan N, Das B (2018) Recent advancements in biofuels & bioenergy utilization. Springer, Singapore, pp 285–302

    Book  Google Scholar 

  17. Aziz N, Fatma T, Varma A, Prasad R (2014). J Nanoparticles. https://doi.org/10.1155/2014/689419

    Article  Google Scholar 

  18. Jena J, Pradhan N, Nayak R, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) J Microbiol Biotechnol 24(4):522–533

    Article  Google Scholar 

  19. Wei Y, Kong LT, Yang R, Wang L, Liu J, Huang X (2011) Langmuir 27(16):10295–10301. https://doi.org/10.1021/la201691c

    Article  Google Scholar 

  20. Mortazavi-Derazkola S, Salavati-Niasari M, Amiri O, Abbasi A (2016). J Energy Chem. https://doi.org/10.1016/j.jechem.2016.10.015

    Article  Google Scholar 

  21. Saim AK, Adu PCO, Amankwah RK, Oppong M, Darteh MN, Darteh FK, Mamudu AW (2021) Environ Technol Rev 10(1):111–130. https://doi.org/10.1080/21622515.2021.1893831

    Article  Google Scholar 

  22. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) J Hazard Mater 248–249:394–400. https://doi.org/10.1016/j.jhazmat.2013.01.030

    Article  Google Scholar 

  23. Fang W, Deng Y, Tang L, Zeng G, Zhou Y, Xie X, Wang J, Wang Y, Wang J (2017) J Colloid Interface Sci 490:834–843

    Article  Google Scholar 

  24. Ren ZH, Li HT, Gao Q, Wang H, Han B, Xia KS (2017) Mater Des 121:167–175. https://doi.org/10.1016/j.matdes.2017.02.064

    Article  Google Scholar 

  25. Tavakoli F, Salavati-Niasari M, Babiei A, Mohandes F (2015) Mater Res Bull 63:51–57. https://doi.org/10.1016/j.materresbull.2014.11.045

    Article  Google Scholar 

  26. Sohail SL, Amjad A, Mustafa U, Jabeen M, Ul-Hamid R A (2020) Colloid Interface Sci Commun 37:100276. https://doi.org/10.1016/j.colcom.2020.100276

  27. Ramakrishna M, Rajesh Babu D, Gengan RM et al (2016) J Nanostruct Chem 6:1–13. https://doi.org/10.1007/s40097-015-0173-y

    Article  Google Scholar 

  28. Zayadi RA, Bakar FA (2020) J Environ Chem Eng 8:103843. https://doi.org/10.1016/j.jece.2020.103843

    Article  Google Scholar 

  29. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Desalination 261(1–2):3–18

    Article  Google Scholar 

  30. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q (2010) Environ Sci Technol 44(19):7641–7646

    Article  Google Scholar 

  31. Beshkar F, Khojasteh H, Salavati-Niasari M (2017). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.02.016

    Article  Google Scholar 

  32. Francis S, Joseph S, Koshy EP, Mathew B (2017) Environ Sci Pollut Res Int 24(21):17347–17357. https://doi.org/10.1007/s11356-017-9329-2

    Article  Google Scholar 

  33. Rajegaonkar PS, Deshpande BA, More MS, Waghmare SS, Sangawe VV, Inamdar A (2018) Mater Sci Eng C 93:623–629

    Article  Google Scholar 

  34. Zhang W, Tan F, Wang W, Qiu X, Qiao X, Chen J (2012) J Hazard Mater 217–218:36–42

    Google Scholar 

  35. Bogireddy NKR, Kumar HAK, Mandal BadalKumar (2015) Journal of Environmental. Chem Eng. https://doi.org/10.1016/j.jece.2015.11.004

    Article  Google Scholar 

  36. Veisi H, Azizi S, Mohammadi P (2017). J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.09.265

    Article  Google Scholar 

  37. Atarod M, Nasrollahzadeh M, Sajadi SM (2016) J Colloid Interface Sci 462:272–279. https://doi.org/10.1016/j.jcis.2015.09.073

    Article  Google Scholar 

  38. Dinda G, Halder D, Mitra A, Pal N, Vasquez-Vasquez C, Atrura M (2017) New J Chem 41:10703–10711. https://doi.org/10.1039/C7NJ00704C

    Article  Google Scholar 

  39. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.02.064

    Article  Google Scholar 

  40. Maryami M, Nasrollahzadeh M, Mehdipour E, Sajadi SM (2016) Int J Hydrogen Energy 41(46):21236–21245

    Article  Google Scholar 

  41. Doan V-D, Phung M-T (2020) Thi Lan-Huong Nguyen, Thanh-Chi Mai, Thanh-Danh Nguyen. Arab J Chem 13:7490–7503. https://doi.org/10.1016/j.arabjc.2020.08.024

    Article  Google Scholar 

  42. Kang C-W, Kolya H (2021) Sustainability 13:3318. https://doi.org/10.3390/su13063318

    Article  Google Scholar 

  43. Khoshnamvand M, Hao Z, Huo C et al (2020) Int J Environ Sci Technol 17:2433–2442. https://doi.org/10.1007/s13762-020-02632-0

    Article  Google Scholar 

  44. Kumari P, Meena A (2020) Colloids Surf A: Physicochem Eng Asp 606:125447. https://doi.org/10.1016/j.colsurfa.2020.125447

    Article  Google Scholar 

  45. Rani P, Kumar V, Singh PP, Matharu AS, Zhang W, Kim KH, Singh J, Rawat M (2020) Environ Int 143:105924. https://doi.org/10.1016/j.envint.2020.105924

    Article  Google Scholar 

  46. Francis PK, Sivadasan S, Avarachan A, Gopinath A (2019). Part Sci Technol. https://doi.org/10.1080/02726351.2018.1547340

    Article  Google Scholar 

  47. Princy KF (2019) Anu Gopinath Mater Today: Proc 9:38–45. https://doi.org/10.1016/j.matpr.2019.02.034

    Article  Google Scholar 

  48. Pradhan N, Pal A, Pal T (2002) Colloids Surf A 196:247–257

    Article  Google Scholar 

  49. Gupta VK, Atar N, Yola ML, Üstündaǧ Z, Uzun L (2014) Water Res 48:210–217

    Article  Google Scholar 

  50. Guo P, Tang L, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y, Deng Y, Ma L, Tan S (2016) J Colloid Interface Sci 469:78–85

    Article  Google Scholar 

  51. Duran N, Duran M, Jesus B, Seabra AB, Favaro WJ, Nakazato G (2016) Nanomedicine: Nanotechnol Biology Med 12:789–799

    Article  Google Scholar 

  52. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez JJ (2012) Nano Lett 12:4271–4275

    Article  Google Scholar 

Download references

Acknowledgements

All authors are thankful to Director CSIR-IMMT, Bhubaneswar for permission to publish this article. NP would like to thank the financial support of Department of Science and Technology, Government of India (Grant Number DST/IS-STAC/CO2-SR-169/13(G) and DST-UKIERI Award No. DST/INT/UK/P-128/2016). SSP would like to thank Council of Scientific and Industrial Research, Govt. of India for the fellowship under CSIR-JRF Scheme (Grant Number 20/12/2015 (ii) EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilotpala Pradhan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Scenedesmus biomass used for green fabrication of biomass-silver nanoparticle composite (CB-AgNP)

• CB-AgNP used as reusable heterogenous catalyst for p-nitrophenol reduction with 95% reduction

• CB-AgNP reused for ten cycles of PNP reduction

• CB-AgNP possessed excellent antimicrobial activity against pathogenic bacteria and fungi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshini, S.S., Sethi, S., Rout, S. et al. Green synthesis of microalgal biomass-silver nanoparticle composite showing antimicrobial activity and heterogenous catalysis of nitrophenol reduction. Biomass Conv. Bioref. 13, 7783–7795 (2023). https://doi.org/10.1007/s13399-021-01825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01825-y

Keywords

Navigation