Skip to main content
Log in

Enhanced lipid accumulation of Chlorella vulgaris with agricultural waste under optimized photoheterotrophic conditions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The study reports the usage of carrot pomace on lipid accumulation of Chlorella vulgaris in photoheterotrophic conditions for biodiesel production. The important parameters which effect lipid accumulation and transesterification reaction were optimized. The addition of 0.5 g/L carrot pomace sugar caused 1.38 times higher microalgae growth and 2.07 time higher lipid concentration when compared with the photoautotrophic conditions. The highest lipid accumulation was observed as 44.8% under nitrogen limitation and photoheterotrophic conditions supplemented with 0.5 g/L pomace sugar. The highest C16 + C18 fatty acid methyl ester (FAME) content was determined as 95.1% by in situ transesterification in a very short time and moderate temperature such as 30 °C among the tested approaches. It can be concluded that most fuel properties of synthesized methyl esters were found to well match with ASTM D6751 and EN 14,214 standards. To the best of our knowledge, this is the first report about the effect of carrot pomace hydrolysate on microalgae growth and lipid accumulation in photoheterotrophic conditions for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li P, Sakuragi K, Makino H (2019) Extraction techniques in sustainable biofuel production: a concise review. Fuel Process Technol 193:295–303. https://doi.org/10.1016/j.fuproc.2019.05.009

    Article  Google Scholar 

  2. Rajesh Kumar K, Channarayappa, Chandrika K, Prasanna KT, Gowda B (2015) Biodiesel production and characterization from non-edible oil tree species Aleurites trisperma Blanco. Biomass Convers Biorefinery 5:287–294. https://doi.org/10.1007/s13399-014-0152-4

  3. Koh MY, Tinia TI (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev 15:2240–2251. https://doi.org/10.1016/j.rser.2011.02.013

    Article  Google Scholar 

  4. Abukhadra MR, Sayed MA (2018) K+ trapped kaolinite (Kaol/K+) as low cost and eco-friendly basic heterogeneous catalyst in the transesterification of commercial waste cooking oil into biodiesel. Energy Convers Manag 177:468–476. https://doi.org/10.1016/j.enconman.2018.09.083

    Article  Google Scholar 

  5. Röttig A, Wenning L, Bröker D, Steinbüchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733. https://doi.org/10.1007/s00253-009-2383-z

    Article  Google Scholar 

  6. Okcu GD (2019) Microalgae biodiesel production: a solution to increasing energy demands in Turkey. Biofuels 1:17. https://doi.org/10.1080/17597269.2019.1637070

    Article  Google Scholar 

  7. Mohd Noor CW, Noor MM, Mamat R (2018) Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew Sustain Energy Rev 94:127–142. https://doi.org/10.1016/j.rser.2018.05.031

    Article  Google Scholar 

  8. Melikoglu M, Cinel AM (2020) Food waste-water-energy nexus: scrutinising sustainability of biodiesel production from sunflower oil consumption wastes in Turkey till 2030. Environ Technol Innov 17:100628. https://doi.org/10.1016/j.eti.2020.100628

    Article  Google Scholar 

  9. Chukwuezie OC, Nwakuba NR, Asoegwu SN, Nwaigwe KN (2017) Cetane number effect on engine performance and gas emission: a review. Am J Eng Res 6:56–67

  10. Alptekin E, Canakci M, Sanli H (2014) Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag 34:2146–2154. https://doi.org/10.1016/j.wasman.2014.07.019

    Article  Google Scholar 

  11. Agrawal S, Singh B, Frómeta AEN, Sharma YC (2012) Commercial- and whitewashing-grade limestone as a heterogeneous catalyst for synthesis of fatty acid methyl esters from used frying oil (UFO). Biomass Convers Biorefinery 2:297–304. https://doi.org/10.1007/s13399-012-0052-4

    Article  Google Scholar 

  12. Mazumdar P, Dasari SR, Borugadda VB, Srivasatava G, Sahoo L, Goud VV (2013) Biodiesel production from high free fatty acids content Jatropha curcas L. oil using dual step process. Biomass Convers Biorefinery 3:361–369. https://doi.org/10.1007/s13399-013-0077-3

  13. Huang GH, Chen F, Wei D et al (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46. https://doi.org/10.1016/j.apenergy.2009.06.016

    Article  Google Scholar 

  14. Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123. https://doi.org/10.1016/j.algal.2014.10.008

    Article  Google Scholar 

  15. Cho HU, Park JM (2018) Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour Technol 256:502–508. https://doi.org/10.1016/j.biortech.2018.02.010

    Article  Google Scholar 

  16. Razzak SA, Ali SAM, Hossain MM, deLasa H (2017) Biological CO2 fixation with production of microalgae in wastewater – a review. Renew Sustain Energy Rev 76:379–390. https://doi.org/10.1016/j.rser.2017.02.038

    Article  Google Scholar 

  17. Chen J, Li J, Dong W et al (2018) The potential of microalgae in biodiesel production. Renew Sustain Energy Rev 90:336–346. https://doi.org/10.1016/j.rser.2018.03.073

    Article  Google Scholar 

  18. Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations - response surface methodology analysis. Energy Convers Manag 50:262–267. https://doi.org/10.1016/j.enconman.2008.09.024

    Article  Google Scholar 

  19. Sarat Chandra T, Maneesh Kumar M, Mukherji S et al (2018) Comparative life cycle assessment of microalgae-mediated CO2 capture in open raceway pond and airlift photobioreactor system. Clean Technol Environ Policy 20:2357–2364. https://doi.org/10.1007/s10098-018-1612-5

    Article  Google Scholar 

  20. Chojnacka K, Marquez-Rocha FJ (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34. https://doi.org/10.3923/biotech.2004.21.34

  21. Chew KW, Chia SR, Show PL et al (2018) Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng 91:332–344. https://doi.org/10.1016/j.jtice.2018.05.039

    Article  Google Scholar 

  22. Yang JS, Rasa E, Tantayotai P et al (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082. https://doi.org/10.1016/j.biortech.2010.10.049

    Article  Google Scholar 

  23. Isleten-Hosoglu M, Ayyildiz-Tamis D, Zengin G, Elibol M (2013) Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic condition. Bioresour Technol 131:258–265. https://doi.org/10.1016/j.biortech.2012.12.070

    Article  Google Scholar 

  24. Selvakumar P, Umadevi K (2014) Enhanced lipid and fatty acid content under photoheterotrophic condition in the mass cultures of Tetraselmis gracilis and Platymonas convolutae. Algal Res 6:180–185. https://doi.org/10.1016/j.algal.2014.10.002

    Article  Google Scholar 

  25. Sati H, Mitra M, Mishra S, Baredar P (2019) Microalgal lipid extraction strategies for biodiesel production: a review. Algal Res 38:101413. https://doi.org/10.1016/j.algal.2019.101413

    Article  Google Scholar 

  26. Solana M, Rizza CS, Bertucco A (2014) Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J Supercrit Fluids 92:311–318. https://doi.org/10.1016/j.supflu.2014.06.013

    Article  Google Scholar 

  27. Zhang Q, Yu Z, Zhu L et al (2018) Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production. Water Res 139:144–157. https://doi.org/10.1016/j.watres.2018.03.076

    Article  Google Scholar 

  28. Tsigie YA, Huynh LH, Ismadji S et al (2012) In situ biodiesel production from wet Chlorella vulgaris under subcritical condition. Chem Eng J 213:104–108. https://doi.org/10.1016/j.cej.2012.09.112

    Article  Google Scholar 

  29. Rasoul-Amini S, Montazeri-Najafabady N, Mobasher MA et al (2011) Chlorella sp.: a new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Appl Energy 88:3354–3356. https://doi.org/10.1016/j.apenergy.2010.12.040

    Article  Google Scholar 

  30. Scarsella M, Parisi MP, D’Urso A, De Filippis P, Opoka J, Bravi M (2009) Achievements and perspectives in hetero- and mixotrophic culturing of microalgae. Chem Eng Trans 17:1065–1070. https://doi.org/10.3303/CET0917178

  31. Clementz A, Torresi PA, Molli JS et al (2019) Novel method for valorization of by-products from carrot discards. Lwt 100:374–380. https://doi.org/10.1016/j.lwt.2018.10.085

    Article  Google Scholar 

  32. Wan YJ, Xu MM, Gilbert RG et al (2019) Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocoll 89:623–630. https://doi.org/10.1016/j.foodhyd.2018.11.017

    Article  Google Scholar 

  33. De Luna MDG, Doliente LMT, Ido AL, Chung TW (2017) In situ transesterification of Chlorella sp. microalgae using LiOH-pumice catalyst. J Environ Chem Eng 5:2830–2835. https://doi.org/10.1016/j.jece.2017.05.006

    Article  Google Scholar 

  34. Koutsouki AA, Tegou E, Badeka A et al (2016) In situ and conventional transesterification of rapeseeds for biodiesel production: the effect of direct sonication. Ind Crops Prod 84:399–407. https://doi.org/10.1016/j.indcrop.2016.02.031

    Article  Google Scholar 

  35. García-Martínez N, Andreo-Martínez P, Quesada-Medina J et al (2017) Optimization of non-catalytic transesterification of tobacco (Nicotiana tabacum) seed oil using supercritical methanol to biodiesel production. Energy Convers Manag 131:99–108. https://doi.org/10.1016/j.enconman.2016.10.078

    Article  Google Scholar 

  36. Mani Rathnam V, Modak JM, Madras G (2020) Non-catalytic transesterification of dry microalgae to fatty acid ethyl esters using supercritical ethanol and ethyl acetate. Fuel 275:117998. https://doi.org/10.1016/j.fuel.2020.117998

    Article  Google Scholar 

  37. Rippka R (1988) Methods in Enzymology. Isolation and purification of cyanobacteria, Elsevier, 167:3–27. https://doi.org/10.1016/0076-6879(88)67004-2

  38. Park WK, Moon M, Kwak MS et al (2014) Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresour Technol 171:343–349. https://doi.org/10.1016/j.biortech.2014.08.109

    Article  Google Scholar 

  39. Sung M, Han JI (2016) Alkaline in situ transesterification of Aurantiochytrium sp. KRS 101 using potassium carbonate. Bioresour Technol 205:250–253. https://doi.org/10.1016/j.biortech.2015.12.089

    Article  Google Scholar 

  40. Patil PD, Gude VG, Mannarswamy A et al (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122. https://doi.org/10.1016/j.biortech.2010.06.031

    Article  Google Scholar 

  41. Church J, Hwang JH, Kim KT et al (2017) Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour Technol 243:147–153. https://doi.org/10.1016/j.biortech.2017.06.081

    Article  Google Scholar 

  42. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  43. Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150. https://doi.org/10.1016/j.biortech.2014.03.130

    Article  Google Scholar 

  44. E G BLIGH WJD, (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  45. Motoda T, Yamaguchi M, Tsuyama T, Kamei I (2019) Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. J Biosci Bioeng 127:66–72. https://doi.org/10.1016/j.jbiosc.2018.06.017

    Article  Google Scholar 

  46. Aimaretti NR, Ybalo CV, Rojas ML et al (2012) Production of bioethanol from carrot discards. Bioresour Technol 123:727–732. https://doi.org/10.1016/j.biortech.2012.08.035

    Article  Google Scholar 

  47. Yu CY, Jiang BH, Duan KJ (2013) Production of bioethanol from carrot pomace using the thermotolerant yeast Kluyveromyces marxianus. Energies 6:1794–1801. https://doi.org/10.3390/en6031794

    Article  Google Scholar 

  48. Yoon KY, Cha M, Shin SR, Kim KS (2005) Enzymatic production of a soluble-fibre hydrolyzate from carrot pomace and its sugar composition. Food Chem 92:151–157. https://doi.org/10.1016/j.foodchem.2004.07.014

    Article  Google Scholar 

  49. Patle S, Lal B (2007) Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol Lett 29:1839–1843. https://doi.org/10.1007/s10529-007-9493-4

    Article  Google Scholar 

  50. Kong W, Yang S, Wang H et al (2020) Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J Appl Phycol 32:1569–1579. https://doi.org/10.1007/s10811-020-02089-1

    Article  Google Scholar 

  51. Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9:1–13. https://doi.org/10.1371/journal.pone.0092460

  52. Li T, Zheng Y, Yu L, Chen S (2014) Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg 66:204–213. https://doi.org/10.1016/j.biombioe.2014.04.010

    Article  Google Scholar 

  53. Krzemińska I, Piasecka A, Nosalewicz A et al (2015) Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities. Bioresour Technol 196:72–77. https://doi.org/10.1016/j.biortech.2015.07.043

    Article  Google Scholar 

  54. Laraib N, Hussain A, Javid A et al (2021) Mixotrophic cultivation of Scenedesmus dimorphus for enhancing biomass productivity and lipid yield. Iran J Sci Technol Trans A Sci 45:397–403. https://doi.org/10.1007/s40995-020-01055-3

    Article  Google Scholar 

  55. Laraib N, Manzoor M, Javid A, Jabeen F, Bukhari SM, Ali W, Hussain A  (2021) Mixotrophic cultivation of Chlorella vulgaris in sugarcane molasses preceding nitrogen starvation: biomass productivity, lipid content, and fatty acid analyses. Environ Prog Sustain Energy 40:1–8. https://doi.org/10.1002/ep.13625

  56. Li R, Pan J, Yan M et al (2020) Effects of mixotrophic cultivation on antioxidation and lipid accumulation of Chlorella vulgaris in wastewater treatment. Int J Phytoremediation 22:638–643. https://doi.org/10.1080/15226514.2019.1701982

    Article  Google Scholar 

  57. Surbhi S, Verma RC, Deepak R, Jain HKYK (2018) A review: food, chemical composition and utilization of carrot (Daucus carota L.) pomace. Int J Chem Stud 6:2921–2926

    Google Scholar 

  58. Ngangkham M, Ratha SK, Prasanna R et al (2012) Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of chlorella sorokiniana. Springerplus 1:1–13. https://doi.org/10.1186/2193-1801-1-33

    Article  Google Scholar 

  59. Chew KW, Chia SR, Show PL et al (2018) Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresour Technol 267:356–362. https://doi.org/10.1016/j.biortech.2018.07.069

    Article  Google Scholar 

  60. Manzoor M, Ahmad Q, ul A, Aslam A et al (2020) Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate. Environ Prog Sustain Energy 39:1–9. https://doi.org/10.1002/ep.13334

    Article  Google Scholar 

  61. Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

    Article  Google Scholar 

  62. Domagała-Światkiewicz I, Gastoł M (2012) Comparative study on mineral content of organic and conventional carrot, celery and red beet juices. Acta Sci Pol Hortorum Cultus 11:173–183

    Google Scholar 

  63. Li C, Yu Y, Zhang D et al (2016) Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture. J Chem Technol Biotechnol 91:680–684. https://doi.org/10.1002/jctb.4623

    Article  Google Scholar 

  64. Stephenson AL, Dennis JS, Howe CJ et al (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58. https://doi.org/10.4155/bfs.09.1

    Article  Google Scholar 

  65. Salam KA, Velasquez-Orta SB, Harvey AP (2016) A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co˗products ˗ a review. Renew Sustain Energy Rev 65:1179–1198. https://doi.org/10.1016/j.rser.2016.07.068

    Article  Google Scholar 

  66. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416. https://doi.org/10.1016/S1389-1723(01)80288-7

    Article  Google Scholar 

  67. Eze VC, Phan AN, Harvey AP (2018) Intensified one-step biodiesel production from high water and free fatty acid waste cooking oils. Fuel 220:567–574. https://doi.org/10.1016/j.fuel.2018.02.050

    Article  Google Scholar 

  68. Martínez N, Callejas N, Morais EG et al (2017) Obtaining biodiesel from microalgae oil using ultrasound-assisted in-situ alkaline transesterification. Fuel 202:512–519. https://doi.org/10.1016/j.fuel.2017.04.040

    Article  Google Scholar 

  69. Salam KA, Velasquez-Orta SB, Harvey AP (2016) Kinetics of fast alkali reactive extraction/in situ transesterification of Chlorella vulgaris that identifies process conditions for a significant enhanced rate and water tolerance. Fuel Process Technol 144:212–219. https://doi.org/10.1016/j.fuproc.2015.12.031

    Article  Google Scholar 

  70. Pandit PR, Fulekar MH (2019) Biodiesel production from Scenedesmus armatus using egg shell waste as nanocatalyst. Mater Today Proc 10:75–86. https://doi.org/10.1016/j.matpr.2019.02.191

    Article  Google Scholar 

  71. Carrapiso AI, García C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 35:1167–1177. https://doi.org/10.1007/s11745-000-0633-8

    Article  Google Scholar 

  72. Velasquez-Orta SB, Lee JGM, Harvey AP (2013) Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem Eng J 76:83–89. https://doi.org/10.1016/j.bej.2013.04.003

    Article  Google Scholar 

  73. Georgogianni KG, Kontominas MG, Pomonis PJ et al (2008) Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process Technol 89:503–509. https://doi.org/10.1016/j.fuproc.2007.10.004

    Article  Google Scholar 

  74. Srivastava G, Paul AK, Goud VV (2018) Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition. Energy Convers Manag 156:269–278. https://doi.org/10.1016/j.enconman.2017.10.093

    Article  Google Scholar 

  75. Muppaneni T, Reddy HK, Patil PD et al (2012) Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent. Appl Energy 94:84–88. https://doi.org/10.1016/j.apenergy.2012.01.023

    Article  Google Scholar 

  76. Ruhul AM, Kalam MA, Masjuki HH et al (2015) State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Adv 5:101023–101044. https://doi.org/10.1039/c5ra09862a

    Article  Google Scholar 

  77. Gopinath A, Puhan S, Nagarajan G (2010) Effect of biodiesel structural configuration on its ignition quality. Int J Energy Environ 1:295–306

    Google Scholar 

  78. Huang Y, Hong A, Zhang D, Li L (2014) Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris. Environ Technol (United Kingdom) 35:931–937. https://doi.org/10.1080/09593330.2013.856954

    Article  Google Scholar 

  79. Anto S, Pugazhendhi A, Mathimani T (2019) Lipid enhancement through nutrient starvation in Chlorella sp. and its fatty acid profiling for appropriate bioenergy feedstock. Biocatal Agric Biotechnol, 20:1–5. https://doi.org/10.1016/j.bcab.2019.101179

  80. Ghosh S, Banerjee S, Das D (2017) Process intensification of biodiesel production from Chlorella sp. MJ 11/11 by single step transesterification. Algal Res 27:12–20. https://doi.org/10.1016/j.algal.2017.08.021

    Article  Google Scholar 

  81. Acharya N, Nanda P, Panda S, Acharya S (2017) Analysis of properties and estimation of optimum blending ratio of blended mahua biodiesel. Eng Sci Technol an Int J 20:511–517. https://doi.org/10.1016/j.jestch.2016.12.005

    Article  Google Scholar 

  82. Pham MT, Hoang AT, Le AT, Al-Tawaha ARMS, Dong VH, Le VV (2018) Measurement and prediction of the density and viscosity of biodiesel blends. Int J Technol 9:1015–1026. https://doi.org/10.14716/ijtech.v9i5.1950

  83. Zhang L, Wang N, Yang M et al (2019) Lipid accumulation and biodiesel quality of Chlorella pyrenoidosa under oxidative stress induced by nutrient regimes. Renew Energy 143:1782–1790. https://doi.org/10.1016/j.renene.2019.05.081

    Article  Google Scholar 

  84. Talebi AF, Tabatabaei M, Chisti Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 2:55–57. https://doi.org/10.18331/BRJ2015.1.2.4

  85. Silitonga AS, Mahlia TMI, Ong HC et al (2017) A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources, Part A Recover Util Environ Eff 39:2006–2014. https://doi.org/10.1080/15567036.2017.1399174

    Article  Google Scholar 

  86. Mathimani T, Senthil Kumar T, Chandrasekar M et al (2017) Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel. Renew Energy 105:637–646. https://doi.org/10.1016/j.renene.2016.12.090

    Article  Google Scholar 

  87. Mathimani T, Uma L, Prabaharan D (2015) Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid - an efficient biodiesel yield and its characterization. Renew Energy 81:523–533. https://doi.org/10.1016/j.renene.2015.03.059

    Article  Google Scholar 

  88. Bagul SY, Bharti RK, Dhar DW (2017) Assessing biodiesel quality parameters for wastewater grown Chlorella sp. Water Sci Technol 76:719–727. https://doi.org/10.2166/wst.2017.223

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ankara University Research Foundation (Project No.: 20L0430004). Nazlıhan TEKİN was awarded a PhD Scholarship from the Scientific and Technological Research Council of Turkey (TUBITAK) and the Council of Higher Education (YOK). Badel ERGÖRÜNLÜ was awarded a M.S. Scholarship from the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Contributions

Nazlıhan Tekin, validation and writing article draft; Badel Ergörünlü, validation; Sevgi Ertuğrul Karatay, funding acquisition, supervision, conceptualization, methodology and writing — review and editing; Gönül Dönmez, data analysis and resources.

Corresponding author

Correspondence to Sevgi Ertuğrul Karatay.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, N., Ergörünlü, B., Karatay, S.E. et al. Enhanced lipid accumulation of Chlorella vulgaris with agricultural waste under optimized photoheterotrophic conditions. Biomass Conv. Bioref. 13, 4183–4194 (2023). https://doi.org/10.1007/s13399-021-01793-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01793-3

Keywords

Navigation