Skip to main content

Advertisement

Log in

Separation of butyric acid from aqueous media using menthol-based hydrophobic deep eutectic solvent and modeling by response surface methodology

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the last decade, research on deep eutectic solvents used in many fields with different roles in chemistry has attracted great interest. Literature reviewing shows that one of these solvents’ most common usage areas is extraction applications as green extraction media, especially to recover biomass conversion products. In this work, hydrophobic deep eutectic solvents (HDES) with different hydrogen bond donors (HBD) and hydrogen bond acceptor (HBA) were mixed and used as a solvent to separate butyric acid from aqueous solutions. Menthol (M)-based HDESs were prepared using three long-chain carboxylic acids (nonanoic acid (NA), decanoic acid (DA), and dodecanoic acid (DDA)) and trioctylphosphine oxide (TOPO) in different molar ratios of binary combinations. Density and refractive index values of HDES were determined. To assess the obtained results, extraction efficiency (E%) and distribution coefficient (D) values were calculated. It was observed that HDES containing menthol and TOPO were extracted more than 90% of butyric acid from the water phase. The transition of butyric acid from the aqueous to the organic phase was demonstrated by FTIR analysis. The Box-Behnken method based on response surface methodology (RSM) was used to explore the impacts of the experimental conditions on reactive extraction yield and to obtain a model equation for the separation of butyric acid from its aqueous solution using M:TOPO hydrophobic deep eutectic solvent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang L, Fu H, Yang HK et al (2018) Butyric acid: applications and recent advances in its bioproduction. Biotechnol Adv 36:2101–2117. https://doi.org/10.1016/j.biotechadv.2018.09.005

    Article  Google Scholar 

  2. Çağlar A, Tomar O, Ekiz T (2017) Butyric acid: structure, properties and effects on health. Kocatepe Vet J Kocatepe Vet J 10:213–225. https://doi.org/10.5578/kvj.59688

    Article  Google Scholar 

  3. Mascal M (2012) Chemicals from biobutanol: technologies and markets. Biofuels, Bioprod Biorefining 6:483–493. https://doi.org/10.1002/bbb.1328

    Article  Google Scholar 

  4. Zigová J, Šturdík E (2000) Advances in biotechnological production of butyric acid. J Ind Microbiol Biotechnol 24:153–160. https://doi.org/10.1038/sj.jim.2900795

    Article  Google Scholar 

  5. Xiao Z, Cheng C, Bao T et al (2018) Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: Kinetics and process economic analysis. Biotechnol Biofuels 11:164. https://doi.org/10.1186/s13068-018-1165-1

    Article  Google Scholar 

  6. Atasoy M, Cetecioglu Z (2020) Butyric acid dominant volatile fatty acids production: bio-augmentation of mixed culture fermentation by Clostridium butyricum. J Environ Chem Eng 8:104496. https://doi.org/10.1016/j.jece.2020.104496

    Article  Google Scholar 

  7. Dwidar M, Park JY, Mitchell RJ, Sang BI (2012) The future of butyric acid in industry. Sci World J 2012:9 pages. https://doi.org/10.1100/2012/471417

  8. Luo H, Yang R, Zhao Y et al (2018) Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol 253:343–354

    Article  Google Scholar 

  9. Câmara-Salim I, González-García S, Feijoo G, Moreira MT (2021) Screening the environmental sustainability of microbial production of butyric acid produced from lignocellulosic waste streams. Ind Crops Prod 162:113280. https://doi.org/10.1016/j.indcrop.2021.113280

    Article  Google Scholar 

  10. Luo L, Li L, Wang H, Chen Y (2016) Tie-line data for aqueous mixtures of butyric acid with diisopropyl ether at various temperatures. J Chem Eng Data 61:760–765. https://doi.org/10.1021/acs.jced.5b00527

    Article  Google Scholar 

  11. Ghanadzadeh H, Ghanadzadeh A, Asgharzadeh S, Moghadam M (2012) Measurement and correlation of phase equilibrium data of the mixtures consisting of butyric acid, water, cyclohexanone at different temperatures. J Chem Thermodyn 47:288–294. https://doi.org/10.1016/j.jct.2011.11.001

    Article  Google Scholar 

  12. Chen Y, Wang Y, Zhou S et al (2017) Liquid phase equilibrium of the ternary systems, water + propionic or butyric acid + mesityl oxide, at (298.2 and 323.2) K. J Chem Thermodyn 111:72–79. https://doi.org/10.1016/j.jct.2017.03.018

    Article  Google Scholar 

  13. Gündogdu T, Çehreli S (2012) Ternary liquid-liquid phase equilibria of (water-carboxylic acid-1-undecanol) systems at 298.15K. Fluid Phase Equilib 331:26–32. https://doi.org/10.1016/j.fluid.2012.06.020

    Article  Google Scholar 

  14. Bilgin M, Arisoy Ç, Kirbaşlar ŞI (2009) Extraction equilibria of propionic and butyric acids with tri-n-octylphosphine oxide/diluent systems. J Chem Eng Data 54:3008–3013. https://doi.org/10.1021/je900063p

    Article  Google Scholar 

  15. Mkhize NT, Msagati TAM, Mamba BB, Momba M (2014) Determination of volatile fatty acids in wastewater by solvent extraction and gas chromatography. Phys Chem Earth 67–69:86–92. https://doi.org/10.1016/j.pce.2013.10.008

    Article  Google Scholar 

  16. Bayazit K, Uslu H, Gök A et al (2016) Investigation of ternary phase diagrams of (water + butyric acid + phenyl acetate) at different temperatures. J Chem Eng Data 61:1313–1320. https://doi.org/10.1021/acs.jced.5b00950

    Article  Google Scholar 

  17. Yu C, Wu S, Zhao Y et al (2017) Liquid-liquid equilibrium data of water + butyric acid + butanal or n-butanol ternary systems at 293.15, 308.15, and 323.15 K. J Chem Eng Data 62:2244–2252. https://doi.org/10.1021/acs.jced.6b00941

    Article  Google Scholar 

  18. Kirbaşlar ŞI (2006) Liquid - liquid equilibria of the water + butyric acid + decanol ternary system. Brazilian J Chem Eng 23:365–374. https://doi.org/10.1590/S0104-66322006000300010

    Article  Google Scholar 

  19. Gök A, Kirbaşlar ŞI, Uslu H, Gilani HG (2011) Liquid-liquid equilibria of (water+butyric acid+diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems. Fluid Phase Equilib 303:71–75. https://doi.org/10.1016/j.fluid.2011.01.012

    Article  Google Scholar 

  20. Luo L, Liu D, Li L, Chen Y (2015) Phase equilibria of (water+propionic acid or butyric acid+2-methoxy-2-methylpropane) ternary systems at 298.2K and 323.2K. Fluid Phase Equilib 403:30–35. https://doi.org/10.1016/j.fluid.2015.06.003

    Article  Google Scholar 

  21. Bilgin M (2006) Phase equilibria of liquid (water + butyric acid + oleyl alcohol) ternary system. J Chem Thermodyn 38:1634–1639. https://doi.org/10.1016/j.jct.2006.03.017

    Article  Google Scholar 

  22. Inyang V, Lokhat D (2021) Butyric acid reactive extraction using trioctylamine in 1-decanol: response surface methodology parametric optimization technique. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-05255-2

    Article  Google Scholar 

  23. Senol A, Lalikoglu M, Bilgin M (2015) Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system: extension of the LSER approach. Fluid Phase Equilib 385https://doi.org/10.1016/j.fluid.2014.10.043

  24. Lalikoglu M, Bilgin M (2014) Ternary phase diagrams for aqueous mixtures of butyric acid with several solvents: experimental and correlated data. Fluid Phase Equilib 371:50–56. https://doi.org/10.1016/j.fluid.2014.03.008

    Article  Google Scholar 

  25. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. https://doi.org/10.1021/cr980032t

    Article  Google Scholar 

  26. Singh SK, Savoy AW (2020) Ionic liquids synthesis and applications: An overview. J Mol Liq 297:112038

    Article  Google Scholar 

  27. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086. https://doi.org/10.1021/ar700044y

    Article  Google Scholar 

  28. Marták J, Schlosser Š (2017) Density, viscosity, and structure of equilibrium solvent phases in butyric acid extraction by phosphonium ionic liquid. J Chem Eng Data 62:3025–3035. https://doi.org/10.1021/acs.jced.7b00039

    Article  Google Scholar 

  29. Marták J, Schlosser Š (2016) New mechanism and model of butyric acid extraction by phosphonium ionic liquid. J Chem Eng Data 61:2979–2996. https://doi.org/10.1021/acs.jced.5b01082

    Article  Google Scholar 

  30. Marták J, Liptaj T, Schlosser Š (2019) Extraction of butyric acid by phosphonium decanoate ionic liquid. J Chem Eng Data 64:2973–2984. https://doi.org/10.1021/acs.jced.9b00057

    Article  Google Scholar 

  31. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273. https://doi.org/10.1016/j.jhazmat.2007.10.079

    Article  Google Scholar 

  32. Anastas PT, Warner JC (1998) Green Chemistry: Theory and Practice. Green Chem Theory Pract Oxford Univ Press, New York

    Google Scholar 

  33. Abbott AP, Capper G, Davies DL, et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70–71. https://doi.org/10.1039/b210714g

  34. Abbott AP, Boothby D, Capper G et al (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    Article  Google Scholar 

  35. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  Google Scholar 

  36. Kollau LJBM, Vis M, Van Den Bruinhorst A et al (2018) Quantification of the liquid window of deep eutectic solvents. Chem Commun 54:13351–13354. https://doi.org/10.1039/c8cc05815f

    Article  Google Scholar 

  37. Martins MAR, Pinho SP, Coutinho JAP (2019) Insights into the nature of eutectic and deep eutectic mixtures. J Solution Chem 48:962–982. https://doi.org/10.1007/s10953-018-0793-1

    Article  Google Scholar 

  38. Schaeffer N, Abranches DO, Silva LP et al (2021) Non-ideality in thymol + menthol type V deep eutectic solvents. ACS Sustain Chem Eng 9:2203–2211. https://doi.org/10.1021/acssuschemeng.0c07874

    Article  Google Scholar 

  39. Abranches DO, Martins MAR, Silva LP et al (2019) Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type v des. Chem Commun 55:10253–10256. https://doi.org/10.1039/c9cc04846d

    Article  Google Scholar 

  40. Van Osch DJGP, Zubeir LF, Van Den Bruinhorst A et al (2015) Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem 17:4518–4521. https://doi.org/10.1039/c5gc01451d

    Article  Google Scholar 

  41. Ribeiro BD, Florindo C, Iff LC et al (2015) Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng 3:2469–2477. https://doi.org/10.1021/acssuschemeng.5b00532

    Article  Google Scholar 

  42. Van Osch DJGP, Dietz CHJT, Warrag SEE, Kroon MC (2020) The curious case of hydrophobic deep eutectic solvents: a story on the discovery, design, and applications. ACS Sustain Chem Eng 8:10591–10612. https://doi.org/10.1021/acssuschemeng.0c00559

    Article  Google Scholar 

  43. Florindo C, Branco LC, Marrucho IM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib 448:135–142. https://doi.org/10.1016/j.fluid.2017.04.002

    Article  Google Scholar 

  44. Riveiro E, González B, Domínguez Á (2020) Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents. Sep Purif Technol 241:116692. https://doi.org/10.1016/j.seppur.2020.116692

    Article  Google Scholar 

  45. Tang W, Dai Y, Row KH (2018) Evaluation of fatty acid/alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water. Anal Bioanal Chem 410:7325–7336. https://doi.org/10.1007/s00216-018-1346-6

    Article  Google Scholar 

  46. Rodríguez-Llorente D, Bengoa A, Pascual-Muñoz G et al (2019) Sustainable recovery of volatile fatty acids from aqueous solutions using terpenoids and eutectic solvents. ACS Sustain Chem Eng 7:16786–16794. https://doi.org/10.1021/acssuschemeng.9b04290

    Article  Google Scholar 

  47. van den Bruinhorst A, Raes S, Maesara SA et al (2019) Hydrophobic eutectic mixtures as volatile fatty acid extractants. Sep Purif Technol 216:147–157. https://doi.org/10.1016/j.seppur.2018.12.087

    Article  Google Scholar 

  48. Verma R, Naik PK, Diaz I, Banerjee T (2021) Separation of low molecular weight alcohols from water with deep eutectic solvents: liquid-liquid equilibria and process simulations. Fluid Phase Equilib 533:112949. https://doi.org/10.1016/j.fluid.2021.112949

    Article  Google Scholar 

  49. Van Osch DJGP, Parmentier D, Dietz CHJT et al (2016) Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Commun 52:11987–11990. https://doi.org/10.1039/c6cc06105b

    Article  Google Scholar 

  50. Schaeffer N, Martins MAR, Neves CMSS et al (2018) Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals. Chem Commun 54:8104–8107. https://doi.org/10.1039/c8cc04152k

    Article  Google Scholar 

  51. Gilmore M, McCourt ÉN, Connolly F et al (2018) Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants. ACS Sustain Chem Eng 6:17323–17332. https://doi.org/10.1021/acssuschemeng.8b04843

    Article  Google Scholar 

  52. Van Osch DJGP, Dietz CHJT, Van Spronsen J et al (2019) A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain Chem Eng 7:2933–2942. https://doi.org/10.1021/acssuschemeng.8b03520

    Article  Google Scholar 

  53. Dietz CHJT, Erve A, Kroon MC et al (2019) Thermodynamic properties of hydrophobic deep eutectic solvents and solubility of water and HMF in them: Measurements and PC-SAFT modeling. Fluid Phase Equilib 489:75–82. https://doi.org/10.1016/j.fluid.2019.02.010

    Article  Google Scholar 

  54. Rocha MAA, Raeissi S, Hage P et al (2017) Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent. Chem Eng Sci 165:74–80. https://doi.org/10.1016/j.ces.2017.02.014

    Article  Google Scholar 

  55. Alkaya E, Kaptan S, Ozkan L et al (2009) Recovery of acids from anaerobic acidification broth by liquid-liquid extraction. Chemosphere 77:1137–1142. https://doi.org/10.1016/j.chemosphere.2009.08.027

    Article  Google Scholar 

  56. Aşçı YS, Lalikoglu M (2021) Development of new hydrophobic deep eutectic solvents based on trioctylphosphine oxide for reactive extraction of carboxylic acids. Ind Eng Chem Res 60:1356–1365. https://doi.org/10.1021/acs.iecr.0c04551

    Article  Google Scholar 

  57. Florindo C, Branco LC, Marrucho IM (2019) Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents. Chemsuschem 12:1549–1559. https://doi.org/10.1002/cssc.201900147

    Article  Google Scholar 

  58. Aşçi YS, Inci I (2010) Extraction equilibria of succinic acid from aqueous solutions by Amberlite LA-2 in various diluents. J Chem Eng Data 55:847–851. https://doi.org/10.1021/je9004917

    Article  Google Scholar 

  59. Tuyun AF, Uslu H (2012) Extraction of D -(−)-quinic acid using an amine extractant in different diluents. J Chem Eng Data 57:190–194. https://doi.org/10.1021/je2009939

    Article  Google Scholar 

  60. Chemarin F, Moussa M, Allais F et al (2017) Mechanistic modeling and equilibrium prediction of the reactive extraction of organic acids with amines: a comparative study of two complexation-solvation models using 3-hydroxypropionic acid. Sep Purif Technol 189:475–487. https://doi.org/10.1016/j.seppur.2017.07.083

    Article  Google Scholar 

  61. Gök A (2020) Enhanced adsorption of nicotinic acid by different types of Mg/Al layered double hydroxides: synthesis, equilibrium, kinetics, and thermodynamics. J Dispers Sci Technol 41:779–786. https://doi.org/10.1080/01932691.2020.1729795

    Article  Google Scholar 

  62. Ferreira SLC, Bruns RE, Ferreira HS et al (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  Google Scholar 

  63. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2. https://doi.org/10.1080/00401706.1960.10489912

  64. Doldolova K, Bener M, Lalikoğlu M, et al (2021) Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem 353https://doi.org/10.1016/j.foodchem.2021.129337

  65. Evlik T, Aşçı YS, Baylan N, et al (2020) Reactive separation of malic acid from aqueous solutions and modeling by artificial neural network (ANN) and response surface methodology (RSM). J Dispers Sci Technol 1–10https://doi.org/10.1080/01932691.2020.1838920

  66. Alhadid A, Mokrushina L, Minceva M (2020) Formation of glassy phases and polymorphism in deep eutectic solvents. J Mol Liq 314https://doi.org/10.1016/j.molliq.2020.113667

  67. Lemaoui T, Darwish AS, Attoui A et al (2020) Predicting the density and viscosity of hydrophobic eutectic solvents: towards the development of sustainable solvents. Green Chem 22:8511–8530. https://doi.org/10.1039/d0gc03077e

    Article  Google Scholar 

  68. Byrne EL, O’donnell R, Gilmore M, et al (2020) Hydrophobic functional liquids based on trioctylphosphine oxide (TOPO) and carboxylic acids. Phys Chem Chem Phys 22:24744–24763. https://doi.org/10.1039/d0cp02605k

    Article  Google Scholar 

  69. Socrates G (2004) Infrared and Raman characteristic group frequencies. Tables and charts, 3rd edn. Wiley, Chicester

  70. Baylan N, Çehreli S (2018) Ionic liquids as bulk liquid membranes on levulinic acid removal: a design study. J Mol Liq 266:299–308. https://doi.org/10.1016/j.molliq.2018.06.075

    Article  Google Scholar 

  71. Gök A (2019) Experimental design of reactive extraction of levulinic acid using green solvents. J Nat Appl Sci 23:878–884. https://doi.org/10.19113/sdufenbed.524747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa Lalikoglu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalikoglu, M. Separation of butyric acid from aqueous media using menthol-based hydrophobic deep eutectic solvent and modeling by response surface methodology. Biomass Conv. Bioref. 12, 1331–1341 (2022). https://doi.org/10.1007/s13399-021-01711-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01711-7

Keywords

Navigation