Skip to main content

Advertisement

Log in

Scale-up process for xylose reductase production using rice straw hydrolysate

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Xylose reductase (XR), an industrially important enzyme, catalyzes the hydrogenation of xylose into xylitol. Xylitol, a polyol sugar, has tremendous applications in different industries due to its significant properties. XR is mainly produced from yeasts and molds, and limited studies have been reported on bacteria. The present study explores the potential of newly isolated bacteria, i.e., Pseudomonas putida BSX-46 for XR synthesis through process scale-up by tailoring its nutritional and cultural requirements. A simple media containing only four ingredients was designed for the production of XR in a short incubation time of 24 h. A process for pretreatment of rice straw was developed to achieve hydrolysate with a good amount of xylose (140 g/kg of rice straw). The enhanced XR production of 213.14±0.47 IU/mg of cells was achieved at bioreactor level using waste rice straw hydrolysate as compared to 94.26±0.62 IU/mg of cells at flask level. The developed bioprocess using efficient bacterial source and economical raw material would provide a low-cost substitute for XR production from xylose-based agro-waste materials at the industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  1. (2020) Industrial enzyme market report.  https://www.marketsandmarkets.com. Accessed 3 Dec 2020

  2. Ronzon YC, Zaldo MZ, Lozano MLC, Uscanga MGA (2012) Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Adv Chem Eng Sci 2(1):9–14. https://doi.org/10.4236/aces.2012.21002

    Article  Google Scholar 

  3. Lugani Y, Sooch BS (2017) Xylitol, An emerging prebiotic: a review. Int J Appl Pharm Biol Res 2(2):67–73

    Google Scholar 

  4. Lugani Y, Oberoi S, Sooch BS (2017) Xylitol: a sugar substitute for patients of diabetes mellitus. World J Pharm Pharm Sci 6(4):741–749. https://doi.org/10.20959/WJPPS20174-8946

    Article  Google Scholar 

  5. Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74(2):277–281. https://doi.org/10.1007/s00253-006-0761-3

    Article  Google Scholar 

  6. Yoshitake J, Ohiwa H, Shimamura M, Imai T (1971) Production of polyalcohol by a Corynebacterium sp. Part I. Production of pentitol from aldopentose. Agric Biol Chem 35(6):905–911. https://doi.org/10.1080/00021369.1971.10860014

    Article  Google Scholar 

  7. Yoshitake J, Shimamura M, Ishizaki H, Irie Y (1976) Xylitol production by Enterobacter liquefaciens. Agric Biol Chem 40(8):1493–1503. https://doi.org/10.1080/00021369.1976.10862262

    Article  Google Scholar 

  8. Izumori K, Tuzaki K (1988) Production of xylitol from D-xylulose by Mycobacterium smegmatis. J Ferment Technol 66(1):33–36

    Article  Google Scholar 

  9. Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl Microbiol Biotechnol 60(1-2):88–93. https://doi.org/10.1007/s00253-002-1067-8

    Article  Google Scholar 

  10. Lugani Y, Sooch BS (2020) Fermentative production of xylitol from a newly isolated xylose reductase producing Pseudomonas putida BSX-46. LWT Food Sci Technol 134:109988 (1-8). https://doi.org/10.1016/j.lwt.2020.109988

    Article  Google Scholar 

  11. Paidimuddala B, Rathod A, Gummadi SN (2017) Inhibition of Debaromyces nepalensis xylose reductase by lignocellulose derived by-products. Biochem Eng J 121:73–82. https://doi.org/10.1016/j.bej.2017.01.019

    Article  Google Scholar 

  12. Komeda H, Yashiki SY, Hoshino K, Asano Y (2015) Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus. J Biosci Bioeng 119(1):57–64. https://doi.org/10.1016/j.jbiosc.2014.06.012

    Article  Google Scholar 

  13. Zheng Y, Yu X, Li T, Xiong X, Chen S (2014) Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP+-linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol Biofuels 7(1):1–8. https://doi.org/10.1186/s13068-014-0125-7

    Article  Google Scholar 

  14. Vu ND, Tran HT, Bui ND, Vu CD, Nguyen HV (2017) Lignin and cellulose extraction from Vietnam’s rice straw using ultrasound-assisted alkaline treatment method. Int J Polym Sci:1–8. https://doi.org/10.1155/2017/1063695

  15. Belal EB (2013) Bioethanol production from rice straw residues. Braz J Microbiol 44(1):225–234. https://doi.org/10.1590/S1517-83822013000100033

    Article  Google Scholar 

  16. Eisenhuber K, Krennhuber K, Steinmuller V, Jager A (2013) Comparison of different pre-treatment methods for separating hemicelluloses from straw during lignocelluloses bioethanol production. Energy Procedia 40:172–181. https://doi.org/10.1016/j.egypro.2013.08.021

    Article  Google Scholar 

  17. Wise WS (1951) The measurement of the aeration of culture media. J Gen Microbiol 5:167–177. https://doi.org/10.1099/00221287-5-1-167

    Article  Google Scholar 

  18. Yokoyama S, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Purification, characterization and structure analysis of NADPH-dependent D-xylose reductases from Candida tropicalis. J Ferment Bioeng 79(3):217–223. https://doi.org/10.1016/0922-338X(95)90606-Z

    Article  Google Scholar 

  19. Li J, Jaitzig J, Lu P, Sussmuth RD, Neubauer P (2015) Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microb Cell Factories 14(83):1–13. https://doi.org/10.1186/s12934-015-0272-y

    Article  Google Scholar 

  20. Rosa SMA, Felipe MGA, Silva SS, Vitolo M (1998) Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol 70(72):127–135. https://doi.org/10.1007/BF02920130

    Article  Google Scholar 

  21. Zhao X, Gao P, Wang Z (1998) The production and properties of a new xylose reductase from fungus. Appl Biochem Biotechnol 70-72(1):405–414. https://doi.org/10.1007/bf02920155

    Article  Google Scholar 

  22. Branco RF, Santos JC, Pessoa A Jr, Silva SS (2009) Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol 84(3):326–330. https://doi.org/10.1002/jctb.2042

    Article  Google Scholar 

  23. Kauldhar BS, Sooch BS (2016) Tailoring of nutritional and process variables for hyperproduction of catalast from novel isolated bacterium Geobacillus sp. BSS-7. Microb Cell Factories 15(7):1–16. https://doi.org/10.1186/s12934-016-0410-1

    Article  Google Scholar 

  24. Yoshitake J, Ishizaki H, Shimamura M, Imai T (1973) Xylitol production by an Enterobacter species. Agric Biol Chem 37(10):2261–2267. https://doi.org/10.1080/00021369.1973.10861002

    Article  Google Scholar 

  25. Bolen PL, Roth KA, Freer SN (1986) Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52(4):660–664. https://doi.org/10.1128/aem.52.4.660-664.1986

    Article  Google Scholar 

  26. Kumdam HB, Murthy SN, Gummadi SN (2012) A statistical approach to optimize xylitol production by Debaromyces nepalensis NCYC 3413 in vitro. Food Nutr Sci 3(8):1027–1036. https://doi.org/10.4236/fns.2012.38136

    Article  Google Scholar 

  27. El-Hadi AA, El-Nour SA, Hammad A, Kamel Z, Anwar M (2014) Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J Radiat Res Appl Sci 7(1):23–28. https://doi.org/10.1016/j.jrras.2013.11.003

    Article  Google Scholar 

  28. Lugani Y, Singla R, Sooch BS (2015) Optimization of cellulase production from newly isolated Bacillus sp. Y3. J Bioprocess Biotech 5(11):1–6. https://doi.org/10.4172/2155-9821.1000264

    Article  Google Scholar 

  29. El-Batal AI, Osman EM, Shaima AM (2013) Optimization and characterization of polygalactouronase enzyme produced by gamma irradiated Penicillium citrinum. J Chem Pharm Res 5(1):336–347

    Google Scholar 

  30. Haq I, Iqbal SH, Qadeen MA (1993) Production of xylanase and CMC cellulase by mold culture. Pak J Biotechnol 4:403–409

    Google Scholar 

  31. McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pre-treatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35:3094–3103. https://doi.org/10.1016/J.BIOMBIOE.2011.04.018

    Article  Google Scholar 

  32. Silva CJSM, Roberto IC (2001) Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Lett Appl Microbiol 32:248–252. https://doi.org/10.1046/j.1472-765X.2001.00899.x

    Article  Google Scholar 

  33. Song SH, Yeom SH, Choi SS, Yoo YJ (2002) Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol Bioprocess Eng 7(6):352–356. https://doi.org/10.1007/BF02933520

    Article  Google Scholar 

  34. Vandeska E, Kuzmanova S, Jeffries TW (1995) Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. J Ferment Bioeng 80(5):513–516. https://doi.org/10.1016/0922-338X(96)80929-9

    Article  Google Scholar 

  35. Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus: properties and process considerations for ethanol production from D-xylose. Enzym Microb Technol 9(1):5–15. https://doi.org/10.1016/0141-0229(87)90043-3

    Article  Google Scholar 

  36. Kern M, Nidetzky B, Kulbe KD, Haltrich D (1998) Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose fermenting yeast Candida tenuis. J Ferment Bioeng 85(2):196–202. https://doi.org/10.1016/S0922-338X(97)86767-0

    Article  Google Scholar 

  37. Seth M, Chand S (2000) Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori- optimization of process parameters. Process Biochem 36(1-2):39–44. https://doi.org/10.1016/S0032-9592(00)00179-5

    Article  Google Scholar 

  38. Converti A, Perego P, Dominguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21(8):719–723. https://doi.org/10.1023/A:1005546814194

    Article  Google Scholar 

  39. Silva DDV, Felipe MDGA, Mancilha IM, Silva SS (2005) Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol production during batch fermentation of sugarcane baggase hydrolysate. Appl Biochem Biotechnol 121-124:427–437. https://doi.org/10.1385/abab:121:1-3:0427

    Article  Google Scholar 

Download references

Acknowledgments

The financial support received from University Grants Commission, New Delhi, India, for this research work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh Sooch.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugani, Y., Singh, J. & Sooch, B.S. Scale-up process for xylose reductase production using rice straw hydrolysate. Biomass Conv. Bioref. 13, 3963–3974 (2023). https://doi.org/10.1007/s13399-021-01449-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01449-2

Keywords

Navigation