Skip to main content
Log in

Economic analysis of vanillin production from Kraft lignin using alkaline oxidation and regeneration

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignin conversion to vanillin is one of the promising routes for lignin valorization. This study presents an economic analysis for the conceptual design of vanillin production from 10 t/h Kraft lignin. The vanillin plant includes alkaline oxidation of lignin with NaOH, ultrafiltration, chromatographic separation, and crystallization to purify vanillin. A boiler for the combustion of waste lignin was used to supply steam required for oxidation reactions and water evaporation. Sodium carbonate (Na2CO3) formed in the combustor was regenerated into NaOH using lime. The heat network was integrated to reduce the consumption of cooling water, steam, and electricity. The plant produced 0.52 t/h vanillin with a yield of 5.2%. The return on investment (ROI) and payback period of this plant were 10.1%/year and 8.0 years, respectively. The ROI was most sensitive to the vanillin price. The desired ROI of 15%/year can be achieved with a plant size of 20 t/h lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cabral Almada C, Kazachenko A, Fongarland P, Da Silva PD, Kuznetsov BN, Djakovitch L (2020) Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-00897-6

  2. Wu Z, Hu L, Jiang Y, Wang X, Xu J, Wang Q, Jiang S (2020) Recent advances in the acid-catalyzed conversion of lignin. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-00976-8

  3. Mahmood N, Yuan Z, Schmidt J, Charles Xu C (2013) Production of polyols via direct hydrolysis of Kraft lignin: effect of process parameters. Bioresour Technol 139:13–20. https://doi.org/10.1016/j.biortech.2013.03.199

    Article  Google Scholar 

  4. Wongtanyawat N, Lusanandana P, Khwanjaisakun N, Kongpanna P, Phromprasit J, Simasatitkul L, Amornraksa S, Assabumrungrat S (2018) Comparison of different Kraft lignin-based vanillin production processes. Comput Chem Eng 117:159–170. https://doi.org/10.1016/j.compchemeng.2018.05.020

    Article  Google Scholar 

  5. Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crop Prod 139:111526. https://doi.org/10.1016/j.indcrop.2019.111526

    Article  Google Scholar 

  6. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  Google Scholar 

  7. Zhang R, Maltari R, Guo M, Kontro J, Eronen A, Repo T (2020) Facile synthesis of vanillin from fractionated Kraft lignin. Ind Crop Prod 145:112095. https://doi.org/10.1016/j.indcrop.2020.112095

    Article  Google Scholar 

  8. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4(1):35–46. https://doi.org/10.1021/acssuschemeng.5b01344

    Article  Google Scholar 

  9. Sudarsanam P, Duolikun T, Babu PS, Rokhum L, Johan MR (2019) Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Convers Bior 10:873–883. https://doi.org/10.1007/s13399-019-00530-1

    Article  Google Scholar 

  10. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev 107:232–249. https://doi.org/10.1016/j.rser.2019.03.008

    Article  Google Scholar 

  11. Araújo JDP, Grande CA, Rodrigues AE (2009) Structured packed bubble column reactor for continuous production of vanillin from Kraft lignin oxidation. Catal Today 147:S330–S335. https://doi.org/10.1016/j.cattod.2009.07.016

    Article  Google Scholar 

  12. Fache M, Boutevin B, Caillol S (2016) Epoxy thermosets from model mixtures of the lignin-to-vanillin process. Green Chem 18(3):712–725. https://doi.org/10.1039/c5gc01070e

    Article  Google Scholar 

  13. Tarabanko VE, Tarabanko N (2017) Catalytic oxidation of lignins into the aromatic aldehydes: general process trends and development prospects. Int J Mol Sci 18(11):2421. https://doi.org/10.3390/ijms18112421

    Article  Google Scholar 

  14. Rodrigues A, Pinto P, Barreiro M, Costa C, Mota I, Fernandes I (2018) An integrated approach for added-value products from lignocellulosic biorefineries: vanillin, syringaldehyde, polyphenols and polyurethane. Springer, Switzerland. https://doi.org/10.1007/978-3-319-99313-3

  15. Gomes ED, Rodrigues AE (2020) Crystallization of vanillin from kraft lignin oxidation. Sep Purif Technol 247:116977. https://doi.org/10.1016/j.seppur.2020.116977

    Article  Google Scholar 

  16. Khwanjaisakun N, Amornraksa S, Simasatitkul L, Charoensuppanimit P, Assabumrungrat S (2020) Techno-economic analysis of vanillin production from kraft lignin: feasibility study of lignin valorization. Bioresour Technol 299:122559. https://doi.org/10.1016/j.biortech.2019.122559

    Article  Google Scholar 

  17. Lyu G, Yoo CG, Pan X (2018) Alkaline oxidative cracking for effective depolymerization of biorefining lignin to mono-aromatic compounds and organic acids with molecular oxygen. Biomass Bioenergy 108:7–14. https://doi.org/10.1016/j.biombioe.2017.10.046

    Article  Google Scholar 

  18. Pinto PCR, Costa CE, Rodrigues AE (2013) Oxidation of lignin from Eucalyptus globulus pulping liquors to produce syringaldehyde and vanillin. Ind Eng Chem Res 52(12):4421–4428. https://doi.org/10.1021/ie303349j

    Article  Google Scholar 

  19. Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine Kraft lignins with oxygen. Holzforschung 49:273–278. https://doi.org/10.1515/hfsg.1995.49.3.273

    Article  Google Scholar 

  20. EABd S, Zabkova M, Araújo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodrigues AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87(9):1276–1292. https://doi.org/10.1016/j.cherd.2009.05.008

    Article  Google Scholar 

  21. Araújo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88(8):1024–1032. https://doi.org/10.1016/j.cherd.2010.01.021

    Article  Google Scholar 

  22. Jeon W, Choi I-H, Park J-Y, Lee J-S, Hwang K-R (2020) Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin. Catal Today 352:95–103. https://doi.org/10.1016/j.cattod.2019.12.037

    Article  Google Scholar 

  23. Gomes ED, Rodrigues AE (2020) Recovery of vanillin from kraft lignin depolymerization with water as desorption eluent. Sep Purif Technol 239:116551. https://doi.org/10.1016/j.seppur.2020.116551

    Article  Google Scholar 

  24. Gomes ED, Mota MI, Rodrigues AE (2018) Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin. Sep Purif Technol 194:256–264. https://doi.org/10.1016/j.seppur.2017.11.050

    Article  Google Scholar 

  25. Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351(3):456–466. https://doi.org/10.1002/adsc.200800614

    Article  Google Scholar 

  26. Voitl T, Rohr PRv (2010) Demonstration of a process for the conversion of Kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49 (2):520–525. https://doi.org/10.1021/ie901293p

  27. Werhan H (2013) A process for the complete valorization of lignin into aromatic chemicals based on acidic oxidation. PhD thesis, ETH Zürich, Zürich

    Google Scholar 

  28. Zabkova M, da Silva EAB, Rodrigues AE (2007) Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J Membr Sci 301(1):221–237. https://doi.org/10.1016/j.memsci.2007.06.025

    Article  Google Scholar 

  29. Abdelaziz OY, Li K, Tunå P, Hulteberg CP (2018) Continuous catalytic depolymerisation and conversion of industrial Kraft lignin into low-molecular-weight aromatics. Biomass Convers Bior 8(2):455–470. https://doi.org/10.1007/s13399-017-0294-2

    Article  Google Scholar 

  30. Do TX, Y-i L, Yeo H, Lee U-d, Y-t C, J-h S (2014) Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips. Energy 70:547–560. https://doi.org/10.1016/j.energy.2014.04.048

    Article  Google Scholar 

  31. Arkell A, Olsson J, Wallberg O (2014) Process performance in lignin separation from softwood black liquor by membrane filtration. Chem Eng Res Des 92(9):1792–1800. https://doi.org/10.1016/j.cherd.2013.12.018

    Article  Google Scholar 

  32. Gomes ED, Rodrigues AE (2019) Lignin biorefinery: separation of vanillin, vanillic acid and acetovanillone by adsorption. Sep Purif Technol 216:92–101. https://doi.org/10.1016/j.seppur.2019.01.071

    Article  Google Scholar 

  33. Cartwright LC (1953) Vanilla-like synthetics, solubility, and volatility of propenyl guaethyl, bourbonal, vanillin, and coumarin. J Agric Food Chem 1(4):312–314. https://doi.org/10.1021/jf60004a006

    Article  Google Scholar 

  34. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. NREL, Golden

    Google Scholar 

  35. Kim S, Lim Y-I, Lee D, Seo MW, Mun T-Y, Lee J-G (2020) Effects of flue gas recirculation on energy, exergy, environment, and economics in oxy-coal circulating fluidized-bed power plants with CO2 capture. Int J Energy Res in press. https://doi.org/10.1002/er.6205

  36. Sanchez DR (2000) Recausticizing-principles and practice: kraft recovery short course. TAPPI Press, Orlando

    Google Scholar 

  37. Lundqvist P (2009) Mass and energy balances over the lime kiln in a Kraft pulp mill. Master thesis, Uppsala University, Uppsala

    Google Scholar 

  38. Nielsen S, Christensen SWS, Thorsen R, lmegaard B Comparison of heat pump design and performance for modern refrigerants. In: 13th IIR-Gustav Lorentzen Conference on Natural Refrigerants, Valencia, Spain, 2018. International Institute of Refrigeration, pp 307–314. https://doi.org/10.18462/iir.gl.2018.1149

  39. Rangaiah GP (2016) Chemical process retrofitting and revamping: techniques and applications, First edn. John Wiley & Sons, New York

    Book  Google Scholar 

  40. Do TX, Y-i L (2016) Techno-economic comparison of three energy conversion pathways from empty fruit bunches. Renew Energy 90:307–318. https://doi.org/10.1016/j.renene.2016.01.030

    Article  Google Scholar 

  41. Do TX, Lim YI, Jang S, Chung HJ (2015) Hierarchical economic potential approach for techno-economic evaluation of bioethanol production from palm empty fruit bunches. Bioresour Technol 189:224–235. https://doi.org/10.1016/j.biortech.2015.04.020

    Article  Google Scholar 

  42. Kemp IC (2006) Pinch analysis and process integration: a user guide on process integration for the efficient use of energy, Second edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  43. Do TX, Y-i L, Cho H, Shim J, Yoo J, Rho K, Choi S-G, Park C, Park B-Y (2018) Techno-economic analysis of fry-drying and torrefaction plant for bio-solid fuel production. Renew Energy 119:45–53. https://doi.org/10.1016/j.renene.2017.11.085

    Article  Google Scholar 

  44. Vu TT, Lim Y-I, Song D, Mun T-Y, Moon J-H, Sun D, Hwang Y-T, Lee J-G, Park YC (2020) Techno-economic analysis of ultra-supercritical power plants using air- and oxy-combustion circulating fluidized bed with and without CO2 capture. Energy 194:116855. https://doi.org/10.1016/j.energy.2019.116855

    Article  Google Scholar 

  45. Davis R, Grundl N, Tao L, Biddy MJ, Tan ECD, Beckham GT, Humbird D, Thompson DN, Roni MS (2018) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update. NREL, Golden

    Google Scholar 

  46. Davis R, Tao L, Scarlata C, Tan ECD, Ross J, Lukas J, Sexton D (2015) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons dilute-acid and enzymatic deconstruction of biomass to sugars and catalytic conversion of sugars to hydrocarbons. NREL, Golden

    Book  Google Scholar 

  47. Couper JR, Penney WR, Fair JR (2012) Chemical process equipment: selection and design, Third edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  48. Do TX, Mujahid R, Lim HS, Kim J-K, Lim Y-I, Kim J (2020) Techno-economic analysis of bio heavy-oil production from sewage sludge using supercritical and subcritical water. Renew Energy 151:30–42. https://doi.org/10.1016/j.renene.2019.10.138

    Article  Google Scholar 

  49. Otromke M, Shuttleworth PS, Sauer J, White RJ (2019) Hydrothermal base catalysed treatment of Kraft lignin-time dependent analysis and a techno-economic evaluation for carbon fibre applications. Bioresour Technol Rep 6:241–250. https://doi.org/10.1016/j.biteb.2019.03.008

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean Government (MEST and MIST) (grant number: 2020R1F1A1066097, 2020M1A2A207980211, and 2019R1G1A1003364).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Il Lim or Daesung Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.T., Lim, YI., Song, D. et al. Economic analysis of vanillin production from Kraft lignin using alkaline oxidation and regeneration. Biomass Conv. Bioref. 13, 1819–1829 (2023). https://doi.org/10.1007/s13399-020-01212-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01212-z

Keywords

Navigation