Skip to main content

Advertisement

Log in

Biohydrogen production from photodecomposition of various cellulosic biomass wastes using metal-TiO2 catalysts

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biohydrogen generation from direct photocatalytic decomposition of lignocellulose biomass waste was investigated using TiO2 with metal co-catalysts. The behavior of the photocatalyst was explored by studying the effect of metal co-catalysts (Pd, Cu, Ni, Ce) and the amount of metal loading. The reactivity of TiO2 was found to vary depending on the metal co-catalysts, with the order of reactivity being Pd > Cu > Ni = Ce. Cellulose samples extracted from coconut husk, fern fiber, and cotton linter were characterized using XRD, FTIR, and SEM analysis. Crystallinity index (CI), degree of polymerization (DP), and α-cellulose and hemicellulose concentrations were correlated with hydrogen yield. Cotton linter cellulose with high CI and DP produced 131 μmol of H2 in 3 h followed by cellulose extracted from coconut husk at 38 μmol and fern fibers at 6 μmol. High concentrations of hemicellulose enhanced the rate of H2 production due to the release of acetic acid during photodecomposition and accelerated the hydrolysis. Sugar fractions containing glucose and fructose obtained from hydrothermal treatment of cotton linter cellulose improved H2 yield, which suggests that the rate limiting step of the reaction is the dissociation of β(1→4)-glycosidic bonds to form sugar monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Farhat W, Venditti RA, Hubbe M, Taha M, Becquart F, Ayoub A (2017) A review of water-resistant hemicellulose-based materials: processing and applications. ChemSusChem 10(2):305–323. https://doi.org/10.1002/cssc.201601047

    Article  Google Scholar 

  2. Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1(3):937–947. https://doi.org/10.1039/c8na00238j

    Article  Google Scholar 

  3. Kanafi NM, Rahman NA, Rosdi NH, Bahruji H, Maarof H (2019) Hydrogel nanofibers from carboxymethyl sago pulp and its controlled release studies as a methylene blue drug carrier. Fibers 7(6):1–16. https://doi.org/10.3390/fib7060056

    Article  Google Scholar 

  4. Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52(6–7):801–807. https://doi.org/10.1007/s11244-009-9237-x

    Article  Google Scholar 

  5. Huang YB, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111. https://doi.org/10.1039/c3gc40136g

    Article  Google Scholar 

  6. Gagić T, Perva-Uzunalić A, Knez Ž, Škerget M (2018) Hydrothermal degradation of cellulose at temperature from 200 to 300 °c. Ind Eng Chem Res 57(18):6576–6584. https://doi.org/10.1021/acs.iecr.8b00332

    Article  Google Scholar 

  7. Uddin MN, Daud WMAW, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4(21):10467–10490. https://doi.org/10.1039/c3ra43972k

    Article  Google Scholar 

  8. Akubo K, Nahil MA, Williams PT (2019) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92(6):1987–1996. https://doi.org/10.1016/j.joei.2018.10.013

    Article  Google Scholar 

  9. Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280. https://doi.org/10.1002/app.1979.070231112

    Article  Google Scholar 

  10. Zhang L, Li Y, Liu X, Ren N, Ding J (2019) Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement. RSC Adv 9(20):11179–11185. https://doi.org/10.1039/C9RA01158G

    Article  Google Scholar 

  11. Sarangi PK, Nanda S (2020) Biohydrogen production through dark fermentation. Chem Eng Technol 43(4):601–612. https://doi.org/10.1002/ceat.201900452

    Article  Google Scholar 

  12. Zou J, Zhang G, Xu X (2018) One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Appl Catal A Gen 563(March):73–79. https://doi.org/10.1016/j.apcata.2018.06.030

    Article  Google Scholar 

  13. Zhang L, Wang W, Zeng S, Su Y, Hao H (2018) Enhanced H2 evolution from photocatalytic cellulose conversion based on graphitic carbon layers on TiO2/NiOx. Green Chem 20(13):3008–3013. https://doi.org/10.1039/c8gc01398e

    Article  Google Scholar 

  14. Ito M, Hori T, Teranishi S, Nagao M, Hibino T (2018) Intermediate-temperature electrolysis of energy grass Miscanthus sinensis for sustainable hydrogen production. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-34544-y

    Article  Google Scholar 

  15. Liu W, Cui Y, Du X, Zhang Z, Chao Z, Deng Y (2016) High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ Sci 9(2):467–472. https://doi.org/10.1039/c5ee03019f

    Article  Google Scholar 

  16. Paajanen A, Vaari J (2017) High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study. Cellulose 24(7):2713–2725. https://doi.org/10.1007/s10570-017-1325-7

    Article  Google Scholar 

  17. Mu D, Liu H, Lin W, Shukla P, Luo J (2020) Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production. Bioresour Technol 302:122879. https://doi.org/10.1016/j.biortech.2020.122879

    Article  Google Scholar 

  18. Mandeep, Kumar Gupta G, Shukla P (2020) Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresour Technol 297(November 2019):122496. https://doi.org/10.1016/j.biortech.2019.122496

    Article  Google Scholar 

  19. Srivastava N, Srivastava M, Malhotra BD, Gupta VK, Ramteke PW, Silva RN, Shukla P, Dubey KK, Mishra PK (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37(6). https://doi.org/10.1016/j.biotechadv.2019.04.006

  20. Hibino T, Kobayashi K, Ito M, Ma Q, Nagao M, Fukui M, Teranishi S (2018) Efficient hydrogen production by direct electrolysis of waste biomass at intermediate temperatures. ACS Sustain Chem Eng 6(7):9360–9368. https://doi.org/10.1021/acssuschemeng.8b01701

    Article  Google Scholar 

  21. Bahruji H, Maarof H, Abdul Rahman N (2019) Quantum efficiency of Pd/TiO2 catalyst for photocatalytic reforming of methanol in ultra violet region. Chem Pap 73(11):2707–2714. https://doi.org/10.1007/s11696-019-00822-w

    Article  Google Scholar 

  22. Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495–500. https://doi.org/10.1038/316495a0

    Article  Google Scholar 

  23. Zhang G, Ni C, Huang X, Welgamage A, Lawton LA, Robertson PKJ, Irvine JTS (2016) Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis. Chem Commun 52(8):1673–1676. https://doi.org/10.1039/c5cc09075j

    Article  Google Scholar 

  24. Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuel 20(2):807–811. https://doi.org/10.1021/ef050319a

    Article  Google Scholar 

  25. Bahruji H, Bowker M, Davies PR, Pedrono F (2011) New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Appl Catal B Environ 107(1–2):205–209. https://doi.org/10.1016/j.apcatb.2011.07.015

    Article  Google Scholar 

  26. Caravaca, A., Jones, W., Hardacre, C., & Bowker, M. (2016). H2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2191). https://doi.org/10.1098/rspa.2016.0054

  27. Kennedy J, Bahruji H, Bowker M, Davies PR, Bouleghlimat E, Issarapanacheewin S (2018) Hydrogen generation by photocatalytic reforming of potential biofuels: Polyols, cyclic alcohols, and saccharides. J Photochem Photobiol A Chem 356:451–456. https://doi.org/10.1016/j.jphotochem.2018.01.031

    Article  Google Scholar 

  28. Fu X, Long J, Wang X, Leung DYC, Ding Z, Wu L, Zhang Z, Li Z, Fu X (2008) Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from glucose solution. Int J Hydrog Energy 33(22):6484–6491. https://doi.org/10.1016/j.ijhydene.2008.07.068

    Article  Google Scholar 

  29. Bowker M, Morton C, Kennedy J, Bahruji H, Greves J, Jones W, Davies PR, Brookes C, Wells PP, Dimitratos N (2014) Hydrogen production by photoreforming of biofuels using Au, Pd and Au-Pd/TiO2photocatalysts. J Catal 310:10–15. https://doi.org/10.1016/j.jcat.2013.04.005

    Article  Google Scholar 

  30. Rahimi Kord Sofla M, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3). https://doi.org/10.1088/2043-6262/7/3/035004

  31. Ouyang X, Wang W, Yuan Q, Li S, Zhang Q, Zhao P (2015) Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. RSC Adv 5(76):61650–61656. https://doi.org/10.1039/c5ra12452b

    Article  Google Scholar 

  32. Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35(1):298–307. https://doi.org/10.1016/j.biombioe.2010.08.067

    Article  Google Scholar 

  33. Ona T, Sonoda T, Shibata M, Fukazawa K (1995) Small-scale method to determine the content of wood components from multiple eucalypt samples. TAPPI J 78(3):121–126

    Google Scholar 

  34. Tappi (2011). Lignin in Wood and Pulp. T222 Om-02, 1–7. https://doi.org/10.1023/a:1019003230537

  35. Guay D (2013) Viscosity of pulp (capillary viscometer method) (revision of T 230 om-08). Tappi Standard, T 230:1–39

    Google Scholar 

  36. Wang J, Yu J, Zhu X, Kong XZ (2012) Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity. Nanoscale Res Lett 7:1–8. https://doi.org/10.1186/1556-276X-7-646

    Article  Google Scholar 

  37. Kwak BS, Chae J, Kim J, Kang M (2009) Enhanced hydrogen production from methanol / water photo-splitting in TiO 2 including Pd component. Bull Kor Chem Soc 30(5):0253–2964

    Google Scholar 

  38. Montoya AT, Gillan EG (2018) Enhanced Photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. ACS Omega 3(3):2947–2955. https://doi.org/10.1021/acsomega.7b02021

    Article  Google Scholar 

  39. Bahruji H, Bowker M, Davies PR, Kennedy J, Morgan DJ (2015) The importance of metal reducibility for the photoreforming of methanol on transition metal-TiO2photocatalysts and the use of non-precious metals. Int J Hydrog Energy 40(3):1465–1471. https://doi.org/10.1016/j.ijhydene.2014.11.097

    Article  Google Scholar 

  40. Gong J, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7(53):33486–33493. https://doi.org/10.1039/c7ra06222b

    Article  Google Scholar 

  41. Mohtar SS, Tengku Malim Busu TNZ, Md Noor AM, Shaari N, Mat H (2017) An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr Polym 166:291–299. https://doi.org/10.1016/j.carbpol.2017.02.102

    Article  Google Scholar 

  42. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8. https://doi.org/10.12691/jmpc-2-1-1

    Article  Google Scholar 

  43. Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG (2000) Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution. Biopolymers Biospectroscopy Sect 57(4):257–262. https://doi.org/10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3

    Article  Google Scholar 

  44. Zheng Y, Fu Z, Li D, Wu M (2018) Effects of ball milling processes on the microstructure and rheological properties of microcrystalline cellulose as a sustainable polymer additive. Materials 11(7):1–13. https://doi.org/10.3390/ma11071057

    Article  Google Scholar 

  45. Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Vincent Edwards J, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328. https://doi.org/10.1007/s10570-018-02230-x

    Article  Google Scholar 

  46. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Fourier Transform Mater Anal. https://doi.org/10.5772/35482

  47. Liu F, Yu R, Guo M (2017) Hydrothermal carbonization of forestry residues: influence of reaction temperature on holocellulose-derived hydrochar properties. J Mater Sci 52(3):1736–1746. https://doi.org/10.1007/s10853-016-0465-8

    Article  Google Scholar 

  48. Abdullah N, Bahruji H, Rogers SM, Wells PP, Catlow CRA, Bowker M (2019) Pd local structure and size correlations to the activity of Pd/TiO2 for photocatalytic reforming of methanol. Phys Chem Chem Phys 21(29):16154–16160. https://doi.org/10.1039/c9cp00826h

    Article  Google Scholar 

  49. Melián EP, López CR, Santiago DE, Quesada-Cabrera R, Méndez JAO, Rodríguez JMD, Díaz OG (2016) Study of the photocatalytic activity of Pt-modified commercial for hydrogen production in the presence of common organic sacrificial agents. Appl Catal A Gen 518:189–197. https://doi.org/10.1016/j.apcata.2015.09.033

    Article  Google Scholar 

  50. Speltini A, Sturini M, Dondi D, Annovazzi E, Maraschi F, Caratto V, Profumo A, Buttafava A (2014) Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study. Photochem Photobiol Sci 13(10):1410–1419. https://doi.org/10.1039/c4pp00128a

    Article  Google Scholar 

  51. Michaelson HB, Michaelson HB (2011) The work function of the elements and its periodicity. 4729(1977):6–11. https://doi.org/10.1063/1.323539

  52. Popovic M, Woodfield BF, Hansen LD (2019) Thermodynamics of hydrolysis of cellulose to glucose from 0 to 100 °C: cellulosic biofuel applications and climate change implications. J Chem Thermodyn 128:244–250. https://doi.org/10.1016/j.jct.2018.08.006

    Article  Google Scholar 

  53. Lan L, Shao Y, Jiao Y, Zhang R, Hardacre C, Fan X (2020) Systematic study of H2 production from catalytic photoreforming of cellulose over Pt catalysts supported on TiO2. Chin J Chem Eng 28(8):2084–2091. https://doi.org/10.1016/j.cjche.2020.03.030

    Article  Google Scholar 

  54. Li Y, Zhang Q, Deng L, Liu Z, Jiang H, Wang F (2018) Biohydrogen production from fermentation of cotton stalk hydrolysate by Klebsiella sp. WL1316 newly isolated from wild carp (Cyprinus carpio L.) of the Tarim River basin. Appl Microbiol Biotechnol 102(9):4231–4242. https://doi.org/10.1007/s00253-018-8882-z

    Article  Google Scholar 

  55. Ghasemian M, Zilouei H, Asadinezhad A (2016) Enhanced biogas and biohydrogen production from cotton plant wastes using alkaline pretreatment. Energy Fuel 30(12):10484–10493. https://doi.org/10.1021/acs.energyfuels.6b01999

    Article  Google Scholar 

  56. Rabelo CABS, Soares LA, Sakamoto IK, Silva EL, Varesche MBA (2018) Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors. J Environ Manag 223(July):952–963. https://doi.org/10.1016/j.jenvman.2018.07.015

    Article  Google Scholar 

  57. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611. https://doi.org/10.1016/j.rser.2016.09.044

    Article  Google Scholar 

  58. Chundawat SPS, Bellesia G, Uppugundla N, Da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11163–11174. https://doi.org/10.1021/ja2011115

    Article  Google Scholar 

  59. Chen H (2015) Lignocellulose biorefinery conversion engineering. In: Lignocellulose biorefinery engineering (Issue 1). https://doi.org/10.1016/b978-0-08-100135-6.00004-1

    Chapter  Google Scholar 

  60. Negahdar L, Delidovich I, Palkovits R (2016) Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Appl Catal B Environ 184:285–298. https://doi.org/10.1016/j.apcatb.2015.11.039

    Article  Google Scholar 

  61. Iervolino G, Vaiano V, Murcia JJ, Rizzo L, Ventre G, Pepe G, Campiglia P, Hidalgo MC, Navío JA, Sannino D (2016) Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J Catal 339:47–56. https://doi.org/10.1016/j.jcat.2016.03.032

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge UBD University Research Grant (UBD/RSCH/URC/RG(b)/2019/012) and Ministry of Education Brunei Darussalam scholarship to S. Abdul Razak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasliza Bahruji.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Razak, S., Mahadi, A.H., Abdullah, R. et al. Biohydrogen production from photodecomposition of various cellulosic biomass wastes using metal-TiO2 catalysts. Biomass Conv. Bioref. 13, 8701–8712 (2023). https://doi.org/10.1007/s13399-020-01164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01164-4

Keywords

Navigation