Skip to main content
Log in

Integral use of rice husks for bioconversion with white-rot fungi

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Rice cultivation is an important agroindustry in Colombia that produces large quantities of lignocellulosic biomass during the post-harvest stage. When this residual biomass accumulates, it causes environmental problems. One alternative solution to this question is the transformation of waste by way of white-rot fungi, which can generate a variety of bio-transformed products. The present study evaluated different biotechnological alternatives for the utilization and transformation of rice crop by-products through the use of white-rot fungi. Laccase and endoglucanase activity, analysis proximal, preliminary identification of terpenes, and quantification of polysaccharides total and beta-glucans were performed with spent substrate and mushrooms of Pycnoporus sanguineus and Pleurotus tubarius obtained by way of solid-state fermentation. The three strains of fungi evaluated demonstrated a relationship between proximal substrate composition and mycelial growth. Proximal analysis of mushrooms and spent mushrooms substrate showed protein content between 2.94 and 16.32 and fiber percentages of 25.72%, as well as phosphorous, sulfur, calcium, magnesium, potassium, iron, and sodium content. Mushrooms of P. tubarius showed greater polysaccharide and beta-glucan content, and in all obtained products, steroids and saturated triterpenes were found. Rice husks are good inductors for the laccase activity of P. sanguineus and L. crinitus, as well as for the endoglucanase activity of P. sanguineus and P. tubarius. This investigation demonstrated that wild fungus strains may transform rice husks into products with added value, whether as food sources or for use in different sectors of the industry.

Biosystem design based on the bioconversion of rice husks by way of mushroom cultivation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muñoz P, Pantoja-Matta AJ, Cuatin MF (2014) Aprovechamiento de residuos agroindustriales como biocombustible y biorefineria. Biotecnol. en el Sect. Agropecu. y Agroindustrial. 12, 10–19

  2. Lin Q, Long L, Wu L, Zhang F, Wu S, Sun X (2016) Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food Agric 97:3476–3480. https://doi.org/10.1002/jsfa.8097

    Article  Google Scholar 

  3. Nadhim M, Ali I, Salahuddin S, Al-saeedi S (2017) Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Inf Process Agric 4:78–82. https://doi.org/10.1016/j.inpa.2017.01.001

    Article  Google Scholar 

  4. Greeshma AA, Sridhar KR, Pavithra M (2018) Nutritional perspectives of an ectomycorrhizal edible mushroom Amanita of the southwestern India. Curr Res Environ Appl Mycol 8:54–68. https://doi.org/10.5943/cream/8/1/4

    Article  Google Scholar 

  5. Mao L, Sonnenberg ASM, Hendriks WH, Cone JW (2018) Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions. J Sci Food Agric 98:1232–1239. https://doi.org/10.1002/jsfa.8745

    Article  Google Scholar 

  6. Asemoloye MD, Jonathan SG, Jayeola AA, Ahmad R (2017) Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. J Environ Manag 200:253–262. https://doi.org/10.1016/j.jenvman.2017.05.090

    Article  Google Scholar 

  7. FAO, FIDA et al (2017) El estado de la seguridad alimentaria y la nutrición en el mundo 2017. Fomentando la resiliencia en aras de la paz y la seguridad alimentaria. FAO, ROMA

    Google Scholar 

  8. Zhu F, Du B, Bian Z, Xu B (2015) Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J Food Compos Anal 41:165–173. https://doi.org/10.1016/j.jfca.2015.01.019

    Article  Google Scholar 

  9. Robledo G (2015) Taxonomía, Diversidad y Ecología de Poloporos

  10. Mata M, Ryvarden L (2010) Studies in neotropical polypores 27: more new and interesting species from Costa Rica. Synop Fungorum 27:59–72

    Google Scholar 

  11. Ryvarden L (1991) Genera of polypores, nomenclature and taxonomy. Fungiflora, Oslo

    Google Scholar 

  12. Largent DL, Johnson D, Watling R, Stuniz DE, Baroni TJ, Thiers HD (1986) How to identify mushrooms to genus (No. C/589.2H6)

  13. Patricia L, Velázquez A, Aragón C (2008) Romero, A.C.: Extracción y purificación de ADN

  14. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An K-D, Bai F-Y, Barreto RW, Begerow D, Bergeron M-J, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge Z-W, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo L-D, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera C, Hirayama K, Hirooka Y, Ho H-M, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong S-B, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SSN, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo J-M, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh S-O, Sung G-H, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang Q-M, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora J-C, Zhang N, Zhuang W-Y, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  Google Scholar 

  15. Naidu Y, Idris AS, Madihah AZ, Kamarudin N (2016) In vitro antagonistic interactions between endophytic basidiomycetes of oil palm (Elaeis guineensis) and Ganoderma boninense. J Phytopathol 164:779–790. https://doi.org/10.1111/jph.12498

    Article  Google Scholar 

  16. Martínez DA, Buglione MB, Filippi MV, Reynoso L d C, Rodríguez GE, Agüero MS (2015) Mycelial growth evaluation of Pleurotus ostreatus and Agrocybe aegerita on pear pomaces. An Biol:1–10. https://doi.org/10.6018/analesbio.37.1

  17. Gaitan R, Salmones D, Pérez Merlo R, Mata G (2006) Manual practico del cultivo de setas: aislamiento, siembra y produccion. México

  18. Machado A, Teixeira M, de Souza Kirsch L, Campelo M d CL, de Aguiar Oliveira IM (2015) Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi J Biol Sci 8. https://doi.org/10.1016/j.sjbs.2015.07.002

  19. Nasehi M, Torbatinejad NM, Zerehdaran S, Safaie AR (2017) Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by-products. J Appl Anim Res 45:221–226. https://doi.org/10.1080/09712119.2016.1150850

    Article  Google Scholar 

  20. Sánchez J, Royse D (2001) La biología y el cultivo de Pleurotus spp. 293. https://doi.org/10.1017/CBO9781107415324.004

  21. Ríos Ruiz WF, Valdez Nuñez RA, Jiménez Flores JP (2017) Isolation, propagation and growth of native edible fungi in agroindustrial residues. Sci Agropecu 8:327–335. https://doi.org/10.17268/sci.agropecu.2017.04.04

    Article  Google Scholar 

  22. AOAC (2000) Official Methods of Analysis of AOAC International. Assoc Off Anal Chem Int Method ce:2–66. https://doi.org/10.3109/15563657608988149

    Article  Google Scholar 

  23. Zerva A, Papaspyridi L-M, Christakopoulos P, Topakas E (2017) Valorization of olive mill wastewater for the production of β-glucans from selected basidiomycetes. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-017-9839-7

  24. Maji PK, Sen IK, Behera B, Maiti TK, Mallick P, Sikdar SR, Islam SS (2012) Structural characterization and study of immunoenhancing properties of a glucan isolated from a hybrid mushroom of Pleurotus florida and Lentinula edodes. Carbohydr Res 358:110–115. https://doi.org/10.1016/j.carres.2012.06.017

    Article  Google Scholar 

  25. Santos-Neves JC, Pereira MI, Carbonero ER, Gracher AHP, Gorin PAJ, Sassaki GL, Iacomini M (2008) A gel-forming β-glucan isolated from the fruit bodies of the edible mushroom Pleurotus florida. Carbohydr Res 343:1456–1462. https://doi.org/10.1016/j.carres.2008.03.001

    Article  Google Scholar 

  26. Arzave JAR (1987) Manual de prácticas de bioquímica. Monterrey, N. L

  27. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  28. Nitschke J, Modick H, Busch E, Von Rekowski RW, Altenbach HJ, Mölleken H (2011) A new colorimetric method to quantify β-1,3-1,6-glucans in comparison with total β-1,3-glucans in edible mushrooms. Food Chem 127:791–796. https://doi.org/10.1016/j.foodchem.2010.12.149

    Article  Google Scholar 

  29. Semedo MC, Karmali A, Fonseca L (2014) A high throughput colorimetric assay of beta-1,3-d-glucans by Congo red dye. J Microbiol Methods 109:140–148. https://doi.org/10.1016/j.mimet.2014.12.020

    Article  Google Scholar 

  30. Huang TC, Chen CP, Wefler V, Raftery A (1961) A stable reagent for the Liebermann-Burchard reaction: application to rapid serum cholesterol determination. Anal Chem 33:1405–1407. https://doi.org/10.1021/ac60178a040

    Article  Google Scholar 

  31. Manjarrés K, Castro A, Rodríguez Sandoval E (2010) Producción de lacasa utilizando Pleurotus ostreatus sobre cáscaras de plátano y bagazo de caña. Rev Lasallista Investig 7:9–15

    Google Scholar 

  32. Gil LM, Manjarres K, Rodriguez E (2012) Influencia de la Adición de Una Fuente de Nitrógeno en la Producción de Ligninasas. Biotecnol en el Sect Agropec Agroindust 10(173–182)

  33. García N, Bermúdez RC, Castillo I, Serrano M, Perraud I (2016) Evaluación de la producción de lacasa de Pleurotus spp. Tecnol Química XXXVI:79–83

    Google Scholar 

  34. Oliveros D, Guarnizo N, Murillo Perea E, Murrillo Arango W (2014) Cellulase activity of filamentous fungi induced by rice husk. Afr J Biotechnol 13:4236–4245. https://doi.org/10.5897/AJB2014.13710

    Article  Google Scholar 

  35. Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95. https://doi.org/10.1016/j.biortech.2017.08.192

    Article  Google Scholar 

  36. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  37. Gallinger C, Suárez D, Barrera R, Azcona J, Schang M (2003) Salvado de arroz: valor nutritivo y uso potencial en alimentos de parrilleros. Revista Argentina de Producción Animal 23(1)

  38. Vega A, Franco H (2013) Productividad y calidad de los cuerpos fructíferos de los hongos comestibles Pleurotus pulmonarius RN2 y P. djamor RN81 y RN82 cultivados sobre sustratos lignocelulósicos. Inform Tecnol 24(1):69–78

    Article  Google Scholar 

  39. De Araújo Conceição T et al (2017) Study of the production of Lentinus crinitus (L.) Fr. lignolytic enzymes grown on agro-industrial waste. Adv Biosci Biotechnol 8(08):259

    Article  Google Scholar 

  40. Kenkebashvili N, Elisashvili V, Wasser SP (2012) Effect of carbon, nitrogen sources, and copper concentration on the ligninolytic enzyme production by Coriolopsis gallica. J Waste Conversion, Bioprod Biotechnol 1:22–27. https://doi.org/10.5147/jpgs.2012.0100

    Article  Google Scholar 

  41. Fonseca MI, Shimizu E, Zapata PD, Villalba LL (2010) Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzym Microb Technol 46:534–539. https://doi.org/10.1016/j.enzmictec.2009.12.017

    Article  Google Scholar 

  42. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12. https://doi.org/10.1016/j.enzmictec.2012.10.003

    Article  Google Scholar 

  43. Yus Azila Y, Mashitah Mat D, Ahmad Shukri Y (2014) The effect of culture conditions on the growth of T. lactinea and anti-inflammatory activities via in vitro inhibition of hyaluronidase and lipoxygenase enzyme activities. J Taiwan Inst Chem Eng 45:2054–2059. https://doi.org/10.1016/j.jtice.2014.04.003

    Article  Google Scholar 

  44. Gambato G, Todescato K, Pavão EM, Scortegagna A, Fontana RC, Salvador M, Camassola M (2016) Evaluation of productivity and antioxidant profile of solid-state cultivated macrofungi Pleurotus albidus and Pycnoporus sanguineus. Bioresour Technol 207:46–51. https://doi.org/10.1016/j.biortech.2016.01.121

    Article  Google Scholar 

  45. Ruilova M, Hernández A, Niño Z (2017) Influence of C/N ratio on productivity and the protein contents of Pleurotus ostreatus grown in differents residue mixtures. Rev la Fac Ciencias Agrar 49:331–344

    Google Scholar 

  46. Roncero Ramos I, Mendiola Lanao M, Pérez Clavijo M, Delgado Andrade C (2017) Effect of different cooking methods on nutritional value and antioxidant activity of cultivated mushrooms. Int J Food Sci Nutr 68:287–297. https://doi.org/10.1080/09637486.2016.1244662

    Article  Google Scholar 

  47. Bach F, Helm CV, Bellettini MB, Maciel GM, Haminiuk CWI (2017) Edible mushrooms: a potential source of essential amino acids, glucans and minerals. Int J Food Sci Technol 52:2382–2392. https://doi.org/10.1111/ijfs.13522

    Article  Google Scholar 

  48. Gao N, Liu CX, Xu QM, Cheng JS, Yuan YJ (2018) Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. Chemosphere. 195:146–155. https://doi.org/10.1016/j.chemosphere.2017.12.062

    Article  Google Scholar 

  49. Barrios Estrada C, RostroAlanis Md J, Parra AL, Belleville MP, Sanchez Marcano J, Iqbal HMN, Parra Saldívar R (2017) Potentialities of active membranes with immobilized laccase for bisphenol A degradation. Int J Biol Macromol 108:837–844. https://doi.org/10.1016/j.ijbiomac.2017.10.177

    Article  Google Scholar 

  50. Obscura N, Puebla C, Acosta L (2016) Uso del hongo Pycnoporus sanguineus para la elaboracion de bebidas. Investig y Desarro den Cienc y Tecnol Aliment 1:675–679

    Google Scholar 

  51. Lou Z, Sun Y, Zhou X, Baig SA, Hu B, Xu X (2017) Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma. 307:30–37. https://doi.org/10.1016/j.geoderma.2017.07.033

    Article  Google Scholar 

  52. Ryden P, Efthymiou MN, Tindyebwa TAM, Elliston A, Wilson DR, Waldron KW, Malakar PK (2017) Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. Biotechnol Biofuels 10:1–11. https://doi.org/10.1186/s13068-017-0880-3

    Article  Google Scholar 

  53. Fei XZ, Ye HJ (2017) Recycling spent Pleurotus eryngii substrate supplemented with Tenebrio molitor feces for cultivation of Agrocybe chaxingu. Int J Recycl Org Waste Agric 6:275–280. https://doi.org/10.1007/s40093-017-0171-9

    Article  Google Scholar 

  54. Picornell Buendia R, Giménez AP, Juan Valero A (2016) Agronomic qualitative viability of spent pleurotus substrate and its mixture with wheat bran and a commercial supplement. J Food Qual 39:533–544

    Article  Google Scholar 

  55. Park YJ, Jung ES, Singh D, Lee DE, Kim S, Lee YW, Kim JG, Lee CH (2017) Spatial (cap & stipe) metabolomic variations affect functional components between brown and white beech mushrooms. Food Res Int 102:544–552. https://doi.org/10.1016/j.foodres.2017.09.043

    Article  Google Scholar 

  56. González J, Saldívar S, Gutiérrez J (2017) Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potencial use as food ingredient. J Food Compos Anal 58:69–81. https://doi.org/10.1016/j.jfca.2017.01.016

    Article  Google Scholar 

  57. Cheung (2013) Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Human Wellness 2:1–5. https://doi.org/10.1016/j.fshw.2013.08.001

    Article  Google Scholar 

  58. Zhu F, Du B, Xu B (2016) A critical review on production and industrial applications of beta-glucans. Food Hydrocoll 52:275–288. https://doi.org/10.1016/j.foodhyd.2015.07.003

    Article  Google Scholar 

  59. Xue Z, Li J, Cheng A, Yu W, Zhang Z, Kou X, Zhou F (2015) Structure identification of triterpene from the mushroom Pleurotus eryngii with inhibitory effects against breast cancer. Plant Foods Hum Nutr 70:291–296. https://doi.org/10.1007/s11130-015-0492-7

    Article  Google Scholar 

  60. Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition. 5:35–46. https://doi.org/10.1016/j.phanu.2017.02.001

    Article  Google Scholar 

  61. Lomascolo A, Uzan Boukhris E, Herpoël Gimbert I, Sigoillot JC, Lesage Meessen L (2011) Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 92:1129–1149. https://doi.org/10.1007/s00253-011-3596-5

    Article  Google Scholar 

  62. Kathirgamanathan M, Abayasekara CL, Kulasooriya SA, Wanigasekera A (2017) Evaluation of 18 isolates of basidiomycetes for lignocellulose degrading enzymes. Ceylon J Sci 46(4):77–84

  63. Pinar O, Karaosmanoğlu K, Sayar NA, Kula C, Kazan D, Sayar AA (2017) Assessment of hazelnut husk as a lignocellulosic feedstock for the production of fermentable sugars and lignocellulolytic enzymes. 3 Biotech 7. https://doi.org/10.1007/s13205-017-1002-4

  64. Falkoski DL, Guimarães VM, De Almeida MN, Alfenas AC, Colodette JL, De Rezende ST (2012) Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Appl Biochem Biotechnol 166:1586–1603. https://doi.org/10.1007/s12010-012-9565-3

    Article  Google Scholar 

  65. Arboleda C, Mejía A, Franco Molano A, Jiménez G, Penninckx M (2008) Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production. Sydowia. 60:165–180

    Google Scholar 

  66. Moreira Neto SL, Matheus DR, Gomes Machado KM (2009) Influence of pH on the growth, laccase activity and RBBR decolorization by tropical basidiomycetes. Braz Arch Biol Technol 52:1075–1082. https://doi.org/10.1590/S1516-89132009000500003

    Article  Google Scholar 

  67. Valle JS, Vandenberghe LPS, Santana TT, Almeida PH, Pereira AM, Linde GA, Colauto NB, Soccol CR (2014) Optimum conditions for inducing laccase production in Lentinus crinitus. Genet Mol Res 13:8544–8551. https://doi.org/10.4238/2014.October.20.31

    Article  Google Scholar 

  68. Cambri G, De Sousa MML, Fonseca DDM, Marchini F, Da Silveira JLM, Paba J (2016) Analysis of the biotechnological potential of a Lentinus crinitus isolate in the light of its secretome. J Proteome Res 15:4557–4568. https://doi.org/10.1021/acs.jproteome.6b00636

    Article  Google Scholar 

  69. Ekundayo F, Ekundayo E, Ayodele B (2017) Comparative studies on glucanases and β-glucosidase activities of Pleurotus ostreatus and P . pulmonarius in solid state fermentation. Mycosphere 8:1051–1058. https://doi.org/10.5943/mycosphere/8/8/12

    Article  Google Scholar 

  70. Salazar López M, Rostro Alanis MJ, Castillo Zacarías C, Parra Guardado AL, Hernández Luna C, Iqbal HM, Parra Saldivar R (2017) Induced degradation of anthraquinone-based dye by laccase produced from Pycnoporus sanguineus (CS43). Water Air Soil Pollut 228. https://doi.org/10.1007/s11270-017-3644-6

  71. Nakajima VM, Soares FE d F, de Queiroz JH (2018) Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. Biocatal Agric Biotechnol 13:58–61. https://doi.org/10.1016/j.bcab.2017.11.011

    Article  Google Scholar 

Download references

Funding

The present study was financed by the research directorate at the Universidad de Manizales-Colombia (Grant Number B0601X0218).

Author information

Authors and Affiliations

Authors

Contributions

Jhon Fredy Betancur Pérez and Walter Murillo-Arango designed and implemented the project and contributed to article advancement. Lina Rocío Dávila-Giraldo, Oscar Torres-Arango, and Cristian Zambrano-Forero participated in the execution of the project.

Corresponding author

Correspondence to Jhon Fredy Betancur Pérez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of novelty

With the present investigation, it is demonstrated that wild mushroom strains can transform organic agro-industrial matter such as rice husk into valueadded by-products. The fungi used are wild strains which were domesticated for the evaluation of mushroom production and changes in proximal composition. In addition, the use of spent substrates of fungi as a source of metabolites (polysaccharide, terpenes, and beta-glucans), enzymes (laccase and endoglucanase), and their proximal analysis is reported in order to identify their possible use for animal feed or other application uses. This suggests an alternative for the Tolima region, Colombia, to use these wild biological resources and determine their possible application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dávila-Giraldo, L.R., Zambrano-Forero, C., Torres-Arango, O. et al. Integral use of rice husks for bioconversion with white-rot fungi. Biomass Conv. Bioref. 12, 2981–2991 (2022). https://doi.org/10.1007/s13399-020-00940-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00940-6

Keywords

Navigation