Skip to main content
Log in

Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study investigated for the first time the production of β-glucosidase from Penicillium roqueforti ATCC 10110 by solid-state fermentation using the forage palm (Nopalea cochenillifera) as a substrate. For the optimization of incubation parameters, time, and temperature, the central composite rotational statistical model was used, resulting in an increase in enzymatic activity, by 94.70% with a maximum yield of 935.07 ± 21.70 IU/g at 23 °C and 56% moisture content. The β-glucosidase produced to show higher reactivity and stability at pH 5.0 at 52 °C. In addition to good halotolerance, maintaining 139.93% and 95.34% of the residual activity in the reaction and 57.93% and 94.28% after 24 h of incubation. The addition of Na+, Fe2 +, Mg2+, EDTA, Triton X-100, lactose, and dichloromethane improved β-glucosidase activity, while Ca2+, Zn2+, and Co2+ were not expressed, and SDS, ethanol, acetone, and methanol were inhibitors. Therefore, it was possible to produce β-glucosidase with a halotolerant profile, indicating a promising alternative to obtain this enzyme for biotechnological and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134:371–385. https://doi.org/10.1007/s10584-013-0853-x

    Article  Google Scholar 

  2. Alencar BRA, Dutra ED, Sampaio EVDSB, Menezes RSC, Morais JMA (2018) Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production. Bioresour Technol 250:273–280. https://doi.org/10.1016/j.biortech.2017.11.042

    Article  Google Scholar 

  3. Santos NT, Dutra ED, do Prado AG, Leite FCB, de Souza RDFR, dos Santos DC, Menezes RSC (2016) Potential for biofuels from the biomass of prickly pear cladodes: challenges for bioethanol and biogas production in dry areas. Biomass and Bioenerg 85:215–222. https://doi.org/10.1016/j.biombioe.2015.12.005

    Article  Google Scholar 

  4. De Souza Filho PF, Ribeiro VT, dos Santos ES, de Macedo GR (2016) Simultaneous saccharification and fermentation of cactus pear biomass-evaluation of using different pretreatments. Ind Crop Prod 89:425–433. https://doi.org/10.1016/j.indcrop.2016.05.028

    Article  Google Scholar 

  5. Chiacchio FPB, Mesquita AS, Santos JRD (2006) Palma forrageira: uma oportunidade econômica ainda desperdiçada para o semiárido baiano. Bahia Agrícola 7:39–49

    Google Scholar 

  6. Santos TC, dos Santos RN, Silva TP, Machado FPP, Bonomo RCF, Franco M (2016) Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci Biotechnol 25:205–211. https://doi.org/10.1007/s10068-016-0031-9

    Article  Google Scholar 

  7. Santos TC, de Brito AR, Bonomo RCF, Pires AJV, Aguiar-Oliveira E, Silva TP, Franco M (2017) Statistical optimization of culture conditions and characterization for ligninolytic enzymes produced from Rhizopus sp. using prickly palm cactus husk. Chem Eng Commun 204:55–63. https://doi.org/10.1590/1983-21252016v29n126rc

    Article  Google Scholar 

  8. Santos TC, Abreu Filho G, Brito AR, Pires AJV, Bonomo RCF, Franco M (2016) Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. by solid state fermentation of prickly pear. Revista Caatinga 29:222–233. https://doi.org/10.1590/1983-21252016v29n126rc

    Article  Google Scholar 

  9. Viniegra-González G, Favela-Torres E, Aguilar CN, de Jesus R-GS, Dıaz-Godınez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167. https://doi.org/10.1016/S1369-703X(02)00128-6

  10. Watanabe A, Suzuki M, Ujiie S, Gomi K (2016) Purification and enzymatic characterization of a novel β-1,6-glucosidase from Aspergillus oryzae. J Biosci Bioeng 121:259–264. https://doi.org/10.1016/j.jbiosc.2015.07.011

    Article  Google Scholar 

  11. Pandey A, Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem Eng J 15:107–115. https://doi.org/10.1016/S1369-703X(02)00192-4

    Article  Google Scholar 

  12. Ferraz JLAA, Souza LO, Soares GA, Coutinho JP, de Oliveira JR, Aguiar-Oliveira E, Franco M (2018) Enzymatic saccharification of lignocellulosic residues using cellulolytic enzyme extract produced by Penicillium roqueforti ATCC 10110 cultivated on residue of yellow mombin fruit. Bioresour Technol 248:214–220. https://doi.org/10.1016/j.biortech.2017.06.048

    Article  Google Scholar 

  13. Marques GL, dos Santos RN, Silva TP, Ferreira MLO, Aguiar-Oliveira E, de Oliveira JR, Franco M (2017) Production and characterisation of xylanase and endoglucanases produced by Penicillium roqueforti ATCC 10110 through the solid-state fermentation of rice husk residue. Waste Biomass Valori 9:2061–2069. https://doi.org/10.1007/s12649-017-9994-x

    Article  Google Scholar 

  14. Meleiro LP, Carli S, Fonseca-Maldonado R, da Silva TM, Zimbardi ALRL, Ward RJ, Furriel RPM (2018) Over expression of a cellobiose-glucose-halotolerant endoglucanase from Scytalidium thermophilum. Appl Biochem Biotech 185:316–333. https://doi.org/10.1007/s12010-017-2660-8

  15. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25:437–441. https://doi.org/10.1016/j.nbt.2009.02.002

    Article  Google Scholar 

  16. Souza LO, de Brito AR, Bonomo RCF, Santana NB, Ferraz JLAA, Aguiar-Oliveira E, Franco M (2018) Comparison of the biochemical properties between the xylanases of Thermomyces lanuginosus (Sigma®) and excreted by Penicillium roqueforti ATCC 10110 during the solid state fermentation of sugarcane bagasse. Biocatal Agric Biotechnol 16:277–284. https://doi.org/10.1016/j.bcab.2018.08.016

  17. Xu J, He B, Wu B, Wang B, Wang C, Hu L (2014) An ionic liquid tolerant cellulase derived from chemically polluted microhabitats and its application in in situ saccharification of rice straw. Bioresour Technol 157:166–173. https://doi.org/10.1016/j.biortech.2014.01.10

    Article  Google Scholar 

  18. Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of cellulase production by Penicillium sp. Biotech 6:162. https://doi.org/10.1007/s13205-016-0483-x

    Article  Google Scholar 

  19. Meleiro LP, Carli S, Fonseca-Maldonado R, da Silva TM, Zimbardi ALRL, Ward RJ, Furriel RPM (2018) Over expression of a cellobiose-glucose-halotolerant endoglucanase from Scytalidium thermophilum. Appl Biochem Biotech 185:316–333. https://doi.org/10.1007/s12010-017-2660-8

  20. Matsuura M, Sasaki J, Murao S (1995) Studies on β-glucosidases from soybeans that hydrolyze daidzin and genistin: isolation and characterization of an isozyme. Biosci Biotech Bioch 59:1623–1627. https://doi.org/10.1271/bbb.59.1623

    Article  Google Scholar 

  21. Pereira CJ, Giese EC, de Souza Moretti MM, dos Santos Gomes AC, Perrone OM, Boscolo M, Martins DAB (2017) Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities. In Enzyme inhibitors and activators IntechOpen 6:139–164. https://doi.org/10.5772/65934

    Article  Google Scholar 

  22. Aliyah A, Alamsyah G, Ramadhani R, Hermansyah H (2017) Production of α-amylase and β-glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia 136:418–423. https://doi.org/10.1016/j.egypro.2017.10.269

    Article  Google Scholar 

  23. Salim AA, Grbavčić S, Šekuljica N, Stefanović A, Tanasković SJ, Luković N, Knežević-Jugović Z (2017) Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: the evaluation of substrate pretreatment methods. Bioresour Technol 228:193–200. https://doi.org/10.1016/j.biortech.2016.12.081

    Article  Google Scholar 

  24. Ohara A, Santos JGD, Angelotti JAF, Barbosa PPM, Dias FFG, Bagagli MP, Castro RJSD (2018) A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation. Food Sci Technol (AHEAD) 38:131–137. https://doi.org/10.1590/1678-457x.17017

    Article  Google Scholar 

  25. Park AR, Hong JH, Kim JJ, Yoon JJ (2012) Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology 40:173–180. https://doi.org/10.5941/MYCO.2012.40.3.173

    Article  Google Scholar 

  26. Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol 86:1473–1484. https://doi.org/10.1007/s00253-009-2395-8

    Article  Google Scholar 

  27. Nehad EA, Yoness MF, Reem AA (2019) Optimization and purification of cellulase produced by Penicillium decumbens and its application. Egypt Pharmaceut J 18:391. https://doi.org/10.4103/epj.epj_31_19

    Article  Google Scholar 

  28. Ng IS, Li CW, Chan SP, Chir JL, Chen P, Tong CG, Yu SM, Ho TH (2010) High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour. Technol 101:1310–1317. https://doi.org/10.1016/j.biortech.2009.08.049

  29. Miyano H, Toyo’oka T, Imai K, Nakajima T (1985) Influences of metal ions on the reaction of amino and imino acids with fluorogenic reagents. Anal Biochem 150:125–130. https://doi.org/10.1016/0003-2697(85)90450-6

    Article  Google Scholar 

  30. De Oliveira RP, dos Santos BV, Costa L, Henrique MA, Pasquini D, Baffi MA (2017) Xylanase and β-glucosidase production by Aspergillus fumigatus using commercial and lignocellulosic substrates submitted to chemical pre-treatments. Ind Crop Prod 95:453–459. https://doi.org/10.1016/j.indcrop.2016.10.055

    Article  Google Scholar 

  31. Nishida VS, de Oliveira RF, Brugnari T, Correa RCG, Peralta RA, Castoldi R, Peralta RM (2018) Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: an inexpensive and efficient process. Int J Biol Macromol 111:1206–1213. https://doi.org/10.1016/j.ijbiomac.2018.01.146

    Article  Google Scholar 

  32. Méndez Arias J, Modesto LFA, Polikarpov I, Pereira JN (2016) Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: optimization and synergism studies. Biotechnol prog 32:1222–1229. https://doi.org/10.1002/btpr.2306

    Article  Google Scholar 

  33. Zhang H, Sang Q (2012) Statistical optimization of cellulases production by Penicillium chrysogenum QML-2 under solid-state fermentation and primary application to chitosan hydrolysis. World J Microb Biot 28:1163–1174. https://doi.org/10.1007/s11274-011-0919-8

    Article  Google Scholar 

  34. Santos FR, Garcia NFL, da Paz MF, Fonseca GG, Leite RSR (2016) Production and characterization of β-glucosidase from Gongronella butleri by solid-state fermentation. Afr J Biotechnol 15:633–641. https://doi.org/10.5897/AJB2015.15025

    Article  Google Scholar 

  35. Morais TPD, Barbosa PMG, Garcia NFL, Rosa-Garzon NGD, Fonseca GG, Paz MFD, Leite RSR (2018) Catalytic and thermodynamic properties of β-glucosidases produced by Lichtheimia corymbifera and Byssochlamys spectabilis. Prep Biochem Biotech 48:777–786. https://doi.org/10.1080/10826068.2018.1509083

    Article  Google Scholar 

  36. Ariff INM, Bahrin EK, Ramli N, Abd-Aziz S (2017) Direct use of spent mushroom substrate from Pleurotus pulmonarius as a readily delignified feedstock for cellulase production. Waste Biomass Valori 10:839–850. https://doi.org/10.1007/s12649-017-0106-8

    Article  Google Scholar 

  37. Shin KC, Seo MJ, Kim DW, Yeom SJ, Kim YS (2019) Characterization of β-glycosidase from Caldicellulosiruptor owensensis and its application in the production of platycodin D from balloon flower leaf. Catalysts 9:1025. https://doi.org/10.3390/catal9121025

    Article  Google Scholar 

  38. Kuo HP, Wang R, Huang CY, Lai JT, Lo YC, Huang ST (2018) Characterization of an extracellular β-glucosidase from Dekkera bruxellensis for resveratrol production. J Food Drug Anal 26:163–171. https://doi.org/10.1016/j.jfda.2016.12.016

    Article  Google Scholar 

  39. Alarid-García C, Escamilla-Silva EM (2017) Comparative study of the production of extracellular β-glucosidase by four different strains of Aspergillus using submerged fermentation. Prep Biochem Biotech 47:597–610. https://doi.org/10.1080/10826068.2017.1286598

    Article  Google Scholar 

  40. Ahmed A, Aslam M, Ashraf M, Nasim F, Ul-Hassan Batool K, Bibi A (2017) Microbial β-glucosidases: screening, characterization, cloning and applications. J App Environ Microbiol 5:57–73. https://doi.org/10.12691/jaem-5-2-2

    Article  Google Scholar 

  41. Fusco FA, Fiorentino G, Pedone E, Contursi P, Bartolucci S, Limauro D (2018) Biochemical characterization of a novel thermostable β-glucosidase from Dictyoglomus turgidum. Int J Biol Macromol 113:783–791. https://doi.org/10.1016/j.ijbiomac.2018.03.018

    Article  Google Scholar 

  42. Oh JM, Lee JP, Baek SC, Kim SG, Do J, Kim YJ, Kim H (2018) Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides. Int J Biol Macromol 111:595–603. https://doi.org/10.1016/j.ijbiomac.2018.01.020

    Article  Google Scholar 

  43. Li Y, Hu X, Sang J, Zhang Y, Zhang H, Lu F, Liu F (2018) An acid-stable β-glucosidase from Aspergillus aculeatus: gene expression, biochemical characterization and molecular dynamics simulation. Int J Biol Macromol 119:462–469. https://doi.org/10.1016/j.ijbiomac.2018.07.165

    Article  Google Scholar 

  44. Asha P, Divya J, Singh IB (2016) Purification and characterisation of processive-type endoglucanase and β-glucosidase from Aspergillus ochraceus MTCC 1810 through saccharification of delignified coir pith to glucose. Bioresour Technol 213:245–248. https://doi.org/10.1016/j.biortech.2016.03.013

    Article  Google Scholar 

  45. Dong W, Xue M, Zhang Y, Xin F, Wei C, Zhang W, Jiang M (2017) Characterization of a β-glucosidase from Paenibacillus species and its application for succinic acid production from sugarcane bagasse hydrolysate. Bioresour Technol 241:309–316. https://doi.org/10.1016/j.biortech.2017.05.141

    Article  Google Scholar 

  46. Ahmed SS, Akhter M, Sajjad M, Gul R, Khurshid S (2019) Soluble production, characterization, and structural aesthetics of an industrially important thermostable β-glucosidase from Clostridium thermocellum in Escherichia coli. BioMed Research International 8:2019–2018. https://doi.org/10.1155/2019/9308593

    Article  Google Scholar 

  47. Ishida N, Okubo A, Kawai H, Yamazaki S, Toda S (1980) Interaction of amino acids with transition metal ions in solution (I) solution structure of L-lysine with Co (II) and Cu (II) ions as studied by nuclear magnetic resonance spectroscopy. Agric Biol Chem 44:263–270. https://doi.org/10.1080/00021369.1980.10863934

    Article  Google Scholar 

  48. Mandels M, Reese ET (1965) Inhibition of cellulases. Annu Rev Phytopathol 3:85–102. https://doi.org/10.1146/annurev.py.03.090165.000505

    Article  Google Scholar 

  49. Ovalle S, Cavello I, Brena BM, Cavalitto S, González-Pombo P (2018) Production and characterization of a β-glucosidase from Issatchenkia terricola and its use for hydrolysis of aromatic precursors in Cabernet Sauvignon wine. LWT 87:515–522. https://doi.org/10.1016/j.lwt.2017.09.026

    Article  Google Scholar 

  50. Wu J, Geng A, Xie R, Wang H, Sun J (2018) Characterization of cold adapted and ethanol tolerant β-glucosidase from Bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol. Int J Biol Macromol 109:872–879. https://doi.org/10.1016/j.ijbiomac.2017.11.072

    Article  Google Scholar 

  51. Martins EDS, Gomes E, da Silva R, Junior RB (2019) Production of cellulases by Thermomucor indicae-seudaticae: characterization of a thermophilic β-glucosidase. Prep Biochem Biotech 49:830–836. https://doi.org/10.1080/10826068.2019.1625060

    Article  Google Scholar 

  52. Onat S, Savaş E (2019) Immobilization and characterization of β-glucosidase from gemlik olive (Olea europea l.) responsible for hydrolization of oleuropein. Ital J Food Sci 31:1120–1770. https://doi.org/10.14674/IJFS-1529

    Article  Google Scholar 

  53. Hsieh CWC, Cannella D, Jørgensen H, Felby C, Thygesen LG (2014) Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem 62:3800–3805. https://doi.org/10.1021/jf5012962

    Article  Google Scholar 

  54. Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jørgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 40:888–895. https://doi.org/10.1016/j.enzmictec.2006.07.014

    Article  Google Scholar 

  55. Dhillon GS, Kaur S, Brar SK, Verma M (2012) Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crop Prod 38:6–13. https://doi.org/10.1016/j.indcrop.2011.12.036

    Article  Google Scholar 

  56. Sun H, Ge X, Hao Z, Peng M (2010) Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol 9:163–166

    Article  Google Scholar 

  57. Hwang EJ, Lee YS, Choi YL (2018) Cloning, purification, and characterization of the organic solvent tolerant β-glucosidase, OaBGL84, from Olleya aquimaris DAU311. App Biol Chem 61:325–336. https://doi.org/10.1007/s13765-018-0361-9

    Article  Google Scholar 

  58. Batra J, Mishra S (2013) Organic solvent tolerance and thermostability of a β-glucosidase co-engineered by random mutagenesis. J Mol Catal B Enzym 96:61–66. https://doi.org/10.1016/j.molcatb.2013.07.002

    Article  Google Scholar 

  59. Pogorevc M, Stecher H, Faber K (2002) A caveat for the use of log P values for the assessment of the biocompatibility of organic solvents. Biotechnol Lett 24:857–860. https://doi.org/10.1023/A:1015598523282

    Article  Google Scholar 

  60. Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87. https://doi.org/10.1002/bit.260300112

    Article  Google Scholar 

  61. Pasin TM, Salgado JCS, Scarcella ASA, de Oliveira TB, de Lucas RC, Cereia M, Polizeli MLTM (2020) A halotolerant endo-1,4-β-xylanase from Aspergillus clavatus with potential application for agroindustrial residues saccharification. Appl Biochem Biotech 191:1–16. https://doi.org/10.1007/s12010-020-03232-x

    Article  Google Scholar 

  62. Silva TP, Fabiana S, dos Santos CWV, Franco M, Caetano LC, Pereira HJV (2018) Production, purification, characterization and application of a new halotolerant and thermostable endoglucanase of Botrytis ricini URM 5627. Bioresour Technol 270:263–269. https://doi.org/10.1016/j.biortech.2018.09.022

    Article  Google Scholar 

  63. Park MS, Oh SY, Fong JJ, Houbraken J, Lim YW (2019) The diversity and ecological roles of Penicillium in intertidal zones. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-49966-5

    Article  Google Scholar 

  64. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98. https://doi.org/10.1007/s007920050142

    Article  Google Scholar 

  65. Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92:2575–2580. https://doi.org/10.1002/jsfa.5860

    Article  Google Scholar 

  66. Passos FD, Pereira JN, de Castro AM (2018) A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Current Opinion in Green and Sustainable Chemistry 14:60–66. https://doi.org/10.1016/j.cogsc.2018.06.003

    Article  Google Scholar 

  67. Salgado JCS, Meleiro LP, Carli S, Ward RJ (2018) Glucose tolerant and glucose stimulated β-glucosidases–a review. Bioresour Technol 267:704–713. https://doi.org/10.1016/j.biortech.2018.07.137

    Article  Google Scholar 

  68. Santos SR, Nayara FLG, Marcelo FP, Gustavo GF, Rodrigo S, Otilde ESRL (2016) Production and characterization of -glucosidase from Gongronella butleri by solid-state fermentation. Afr J Biotechnol 15:633–641. https://doi.org/10.5897/ajb2015.15025

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support and the State University of Santa Cruz (UESC) for its administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julieta Rangel de Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Neves, C.A., de Menezes, L.H.S., Soares, G.A. et al. Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Conv. Bioref. 12, 3133–3144 (2022). https://doi.org/10.1007/s13399-020-00930-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00930-8

Keywords

Navigation