Skip to main content
Log in

Pulp refining in improving degree of substitution of methylcellulose preparation from jute pulp

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Jute is the most important crop in Bangladesh, and it plays a vital role in the country’s economy. Bangladesh is the second largest jute producer in the world. In this paper, methylcellulose was prepared from jute pulp in bleached, unbleached, and refined and unrefined state. The methoxyl content of the methylcellulose prepared from the unbleached pulps were only 13.2–14.3%, while the methoxyl content for bleached pulp reached to 16.5–18.8%. The methoxyl content of bleached pulp after 3000 revolution of refining reached to 24.63% in 4 h of reaction time, which further increased to 36.60% in 5 h reaction time. Further PFI revolution did not increase methoxyl content significantly. The water solubility of the prepared methylcellulose was directly related with degree of substitution (DS). The infrared spectra of methylcellulose at the regions of 3400 and 2900 cm−1 and its ratio showed a lower intensity than the pulp sample evidencing the methylation of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  Google Scholar 

  2. Beatriz AP, Assa MN, Belgacem EF (2006) Mercerized linters cellulose: characterization and acetylation in N,N-dimethylacetamide/lithium chloride. Carbohydr Polym 63:19–29. https://doi.org/10.1016/j.carbpol.2005.06.010

    Article  Google Scholar 

  3. Chen Q, Nattakan S, Ni X, Ton P (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71:458–467. https://doi.org/10.1016/j.carbpol.2007.06.019

    Article  Google Scholar 

  4. Chen H, Venditti RA, Jameel H, Park S (2012) Enzymatic hydrolysis of recovered office printing paper with low enzyme dosages to produce fermentable sugars. Appl Biochem Biotechnol 166:1121–1136. https://doi.org/10.1007/s12010-011-9498-2

    Article  Google Scholar 

  5. Chen X, Kuhn E, Wang W, Park S, Flanegan K, Trass O, Tucker M (2013) Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresour Technol 147:401–408. https://doi.org/10.1016/j.biortech.2013.07.109

    Article  Google Scholar 

  6. Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893. https://doi.org/10.1016/j.carres.2004.10.005

    Article  Google Scholar 

  7. Duan C, Qin X, Wang X, Feng X, Yu H, Dai L, Wang W, Zhao W (2019) Simultaneous mechanical refining and phosphotungstic acid catalysis for improving the reactivity of kraft-based dissolving pulp. Cellulose 26(9):5685–5694

    Article  Google Scholar 

  8. Filho GR, Assuncao RMN, Vieira JG, Meireles CS, Cerqueira DA, Barud HS, Ribeiro SJL, Messaddeq Y (2007) Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab 92:205–210. https://doi.org/10.1016/j.polymdegradstab.2006.11.008

    Article  Google Scholar 

  9. García-Fuentevilla LL, Martin-Sampedro R, Domínguez P, Villar JC, Eugenio ME (2013) Refining and urea pretreatments to enhance biobleaching of eucalyptus kraft pulp. BioResources 8(4):4849–4863

    Article  Google Scholar 

  10. Han Q, Jin Y, Jameel H, Chang HM, Phillips R, Park S (2015) Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Appl Biochem Biotechnol 175:1193–1210. https://doi.org/10.1007/s12010-014-1349-5

    Article  Google Scholar 

  11. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  Google Scholar 

  12. Singh RK (2013) Methylcellulose synthesis from corn cobs. J Therm Anal Calorim 114:809–819. https://doi.org/10.1007/s10973-013-3032-4

    Article  Google Scholar 

  13. Jones BW, Venditti R, Park S, Jameel H, Koo B (2013) Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresour Technol 147:353–360. https://doi.org/10.1016/j.biortech.2013.08.030

    Article  Google Scholar 

  14. Khalifa BA, Abdel-Zaher N, Shoukr FS (1991) Crystalline character of native and chemically treated Saudi Arabian cotton fibers. Text Res J 61:602–608. https://doi.org/10.1177/004051759106101007

    Article  Google Scholar 

  15. Lian HL, You JX, Lian ZN (2012) Effect of prior mechanical refining on biobleaching of wheat straw pulp with laccase/xylanase treatment. BioResources 7(3):3113–3124

    Google Scholar 

  16. Mansour OY, Nagaty A, El-Zawawy WK (1994) Variables affecting the methylation reactions of cellulose. J Appl Polym Sci 54:519–524. https://doi.org/10.1002/app.1994.070540501

    Article  Google Scholar 

  17. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. https://doi.org/10.1021/ja0257319

    Article  Google Scholar 

  18. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. https://doi.org/10.1021/ja037055w

    Article  Google Scholar 

  19. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  Google Scholar 

  20. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016

    Article  Google Scholar 

  21. Raymond S, Kvick Å, Chanzy H (1995) The structure of cellulose II: a revisit. Macromolecules 28:8422–8425. https://doi.org/10.1021/ma00128a063

    Article  Google Scholar 

  22. Smook GA (1992) Handbook for pulp & paper technologists, 2nd edn. Angus Wilde Publications, Vancouver

    Google Scholar 

  23. Sotton M, Arniaud AM, Rabourdin C (1978) Etude par diffractomerie des rayons X des parametres de cristallinite et de desordre dans les fibres textiles. Bulletin Scientifique ITF 7:265–290

    Google Scholar 

  24. Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymerization of native cellulose. Macromolecules 24:2461–2466

    Article  Google Scholar 

  25. Takahashi SI, Fujimoto T, Miyamoto T, Inagaki H (1987) Relationship between distribution of substituents and water solubility of O-methyl cellulose. J Polym Sci A Polym Chem 25(4):987–994

    Article  Google Scholar 

  26. Tao L, Chen X, Aden A, Kuhn E, Himmel ME, Tucker M, Franden MAA, Zhang M, Johnson DK, Dowe N (2012) Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 2 techno-economic analysis. Biotechnol Biofuels 5:69. https://doi.org/10.1186/1754-6834-5-69

    Article  Google Scholar 

  27. Vieira JG, Filho GR, Meireles CS, Faria FAC, Gomide DD, Pasquini D, Cruz SF, Assunção RMN, Motta LAC (2012) Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polı’meros 22:80–87. https://doi.org/10.1590/S0104-14282012005000011

    Article  Google Scholar 

  28. Viera RPG, Filho GR, Assuncao RMN, Meireles CS, Vieira JG, Oliveira GS (2007) Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr Polym 67:182–189. https://doi.org/10.1016/j.carbpol.2006.05.007

    Article  Google Scholar 

  29. Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatoriald-spacings. J Wood Sci 47(2):124–128

    Article  Google Scholar 

  30. Xu H, Li B, Mu X, Yu G, Liu C, Zhang Y, Wang H (2014) Quantitative characterization of the impact of pulp refining on enzymatic saccharification of the alkaline pretreated corn stover. Bioresour Technol 169:19–26

    Article  Google Scholar 

  31. Yang S, Yang B, Duan C, Fuller DA, Wang X, Chowdhury SP, ..., Ni Y (2019) Applications of enzymatic technologies to the production of high-quality dissolving pulp: a review. Bioresour Technol

  32. Zakis GF (1994) Functional analysis of lignins and their derivatives. Tappi Press, GA, USA

    Google Scholar 

  33. Zhbankov RG (1966) Infrared spectra of cellulose and its derivatives. Plenum Publishing Corporation, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sarwar Jahan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ria, S.A., Ferdous, T., Yasin Arafat, K.M. et al. Pulp refining in improving degree of substitution of methylcellulose preparation from jute pulp. Biomass Conv. Bioref. 12, 2431–2439 (2022). https://doi.org/10.1007/s13399-020-00741-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00741-x

Keywords

Navigation