Skip to main content

Advertisement

Log in

Numerical simulation of combustion in a biomass briquette chain boiler

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A bed and furnace integrated model of biomass briquette chain boilers was built on basis of theories of computational fluid mechanics, heat transfer, thermodynamics, and chemical reaction kinetics. The combustion in the biomass briquette chain boilers was characterized under five working parameters (air-preheating temperature, fuel bed thickness, grate advancing speed, particle diameter, air supply mode) through experimental design, numerical simulation, and mathematical programming. Finally, these parameters were optimized with the ant colony algorithm. It was found that the combustion efficiency and economic benefits were both optimized at the air-preheating temperature of 553.22 K, fuel bed thickness of 0.16 m, particle diameter of 0.02 m, and uniform centered air supply. This study offers some theoretical basis and method for the optimized design and operation of biomass briquette chain boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Exponential factor mol/(m2 · s · Pa)

\( {\overline{C}}_{p,s} \) :

Solid average specific heat capacity, J/(kg · K)

\( {\overline{C}}_{p,g} \) :

Gas average specific heat capacity, J/(kg · K)

C w, s :

Solid surface water vapor density, kg/m3

C w, g :

Water vapor density in the gas phase, kg/m3

C fuel :

Fuel concentration, %

C ox :

Oxygen concentration, %

d :

Particle diameter, m

D s :

Fuel particle diameter, m

D m :

Particle surface mass transfer coefficient, m/s

D g :

Volatile matter diffusion coefficient, m2/s

E :

Activation energy, kJ/mol

F g :

Air supply mode

GC:

Gas chromatograph

G w :

Fuel surface gas input irradiation, W/m2

h s :

Solid heat transfer coefficient, W/(m2 · K)

h s, g :

Gas-solid two-phase flow heat transfer coefficient, W/(m2 · K)

H s :

Material bed thickness, m

ΔH k :

Reaction heat, J

H evp :

Latent heat of water evaporation, J/kg

k r :

Heat transfer reaction rate, kg/s

k m :

Mass transfer reaction rate, kg/s

M char :

Coke molar mass, kg/mol

\( {M}_{O_2} \) :

Oxygen molar mass, kg/mol

q conv :

Gas convection heat flux, W

q rad :

Gas radiant heat flux, W

Q :

Particles absorbed heat, J

R min :

Volatile combustion rate, kg/s

R i :

Formation rate of component i, mol/(m3 · s)

R water :

Rate of water evaporation, kg/s

R char :

Coke combustion rate, kg/s

R :

Universal gas constant, kJ/mol

s. t.:

Subject to

S :

Source term, W/m3

S a :

Solid source term, W/m3

S i :

Source term of component i, W/m3

S ϕ :

Source term of ϕ, W/m3

\( {\overline{t}}^{{\prime\prime} } \) :

Mass outlet temperature, K

t max :

Maximum mass outlet temperature, K

T A3 :

Air-preheating temperature, K

TPS:

Thermoelectric power stations

T s :

Gas temperature, K

T g :

Solid temperature, K

T n :

Combustion particles surface temperature, K

T w :

Fuel surface temperature, K

u s :

Solid phase apparent velocity, m/s

u g :

Gas phase apparent velocity, m/s

u j :

Velocity in j direction, m/s

u :

X-axis direction speed, m/s

v :

Y-axis direction speed, m/s

V c :

Grate advancing speed, m/s

Y i :

Mass fraction of component i

\( {Y}_{O_2} \) :

Mass fraction of oxygen

ρ :

Density, kg/m3

ρ s :

Solid density, kg/m3

ρ g :

Gas density, kg/m3

α :

Excess air ratio

λ s, eff :

Solid effective thermal conductivity, W/(m · K)

λ g, eff :

Gas effective thermal conductivity, W/(m · K)

ϕ :

Universal variable

Φ :

Selection operator

ε :

Particle porosity, %

ξ w :

Fuel surface blackness

σ :

Stefan-Boltzmann constant, W/(m2 · K4)

\( {\overline{\vartheta}}^{{\prime\prime} } \) :

Final waste-gas temperature, K

ϑ max :

Allowed maximum waste-gas temperature, K

η :

Thermal efficiency, %

η e :

Exergy efficiency, %

Ω fule :

Fuel equivalent coefficient

Ω ox :

Oxidant equivalent coefficient

Γ :

Diffusion rate, mol/(m2 · s)

Γ i :

Mass transfer coefficient of component i, mol/(m3 · s)

Γ ϕ :

Diffusion rate of ϕ, mol/(m2 · s)

\( \overline{\psi} \) :

Transport fluxes, mol/(m2 · s)

References

  1. Purvis B, Mao Y, Robinson D (2019) Three pillars of sustainability: in search of conceptual origins. Sustain Sci 14:681–695. https://doi.org/10.1007/s11625-018-0627-5

    Article  Google Scholar 

  2. Han C, Tian M, Xiao B, Zhenhong QI (2019) Cultivation countermeasures of farmers' ecological consciousness and behavior in eco-civilization construction—a case study of agricultural waste recycling. Asian Agric Res 11(04):52–57

    Google Scholar 

  3. Zhang N, Wang W, Li J (2013) CFD simulation of combustion in a 150 MWe CFB boiler. Cleaner Combustion and Sustainable World:65–67. https://doi.org/10.1007/978-3-642-30445-3_11

  4. Chernetskii, M. Y, Alekhnovich, A. N, Dekterev, A. A (2012) A mathematical model of slagging of the furnace of the pulverized-coal-firing boiler. Therm Eng 59(8):610–618. https://doi.org/10.1134/S0040601512080046

  5. Varaksin AY (2019) Collision of particles and droplets in turbulent two-phase flows. High Temp 57:555–572. https://doi.org/10.1134/S0018151X19040230

    Article  Google Scholar 

  6. Pakhomov MA, Terekhov VI (2017) Solid particle spreading in gas-dispersed confined swirling flow. Eulerian and Lagrangian approaches Thermophys Aeromech 24:325–338. https://doi.org/10.1134/S0869864317030015

    Article  Google Scholar 

  7. Askarova AS, Bolegenova SA, Bolegenova SA, Bolegenova SA, Maximov VY, Beketaeva MT (2019) 3D modeling of the aerodynamics and heat transfer in the combustion chamber of the bkz-75 boiler of the shakhtinsk cogeneration plant. Thermophysics and Aeromechanics 26:295–311. https://doi.org/10.1134/S0869864319020124

    Article  Google Scholar 

  8. Perera KUC, Narayana M (2019) Modelling of particle size effect on equivalence ratio requirement for wood combustion in fixed beds. Biomass Convers Biorefinery 9:183–199. https://doi.org/10.1007/s13399-018-0348-0

    Article  Google Scholar 

  9. Zhang D, Lin JM (2017) Recent development of gas–solid phase chemiluminescence. J Anal Test 1:267–273. https://doi.org/10.1007/s41664-017-0043-3

    Article  Google Scholar 

  10. Rosa F, Corvis Y, Lai-Kuen R, Charrueau C, Espeau P (2015) Influence of particle size on the melting characteristics of organic compounds. J Therm Anal Calorim 120:783–787. https://doi.org/10.1007/s10973-014-4210-8

    Article  Google Scholar 

  11. Dernbecher A, Dieguez-Alonso A, Ortwein A (2019) Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Convers Biorefinery 9:129–182. https://doi.org/10.1007/s13399-019-00370-z

    Article  Google Scholar 

  12. Zabezhinskiy LD (2015) Heat transfer in a hybrid boiler for batch heating and radiant cooling of coke. Coke Chem 58:312–319. https://doi.org/10.3103/S1068364X15080074

    Article  Google Scholar 

  13. Sonnenwald F, Stovin V, Guymer I (2016) Feasibility of the porous zone approach to modelling vegetation in CFD. Earth Planet Sci. https://doi.org/10.1007/978-3-319-27750-9_6

  14. Faghri A, Zhang Y (2020) Flow and heat transfer in porous media. In: Fundamentals of Multiphase Heat Transfer and Flow. Springer, Cham

    Chapter  Google Scholar 

  15. Sassi P, Pallarès J, Stiriba Y (2020) Visualization and measurement of two-phase flows in horizontal pipelines. Exp Comput Multiph Flow 2:41–51. https://doi.org/10.1007/s42757-019-0022-1

    Article  Google Scholar 

  16. Mazza GD, Soria JM, Gauthier D, Reyes Urrutia A, Zambon M, Flamant G (2016) Environmental friendly fluidized bed combustion of solid fuels: a review about local scale modeling of char heterogeneous combustion. Waste Biomass Valor 7:237–266. https://doi.org/10.1007/s12649-015-9461-5

    Article  Google Scholar 

  17. Keche AJ, Gaddale APR, Tated RG (2015) Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Techn Environ Policy 17:465–473. https://doi.org/10.1007/s10098-014-0804-x

    Article  Google Scholar 

  18. Gooch JW (2011) Thermogravimetric analysis. In: Encyclopedic Dictionary of Polymers. Springer, New York, NY

    Chapter  Google Scholar 

  19. Jurado N, Darabkhani HG, Anthony EJ, Oakey JE (2015) Oxy-fuel combustion for carbon capture and sequestration (CCS) from a coal/biomass power plant: experimental and simulation studies. In: Dincer I, Colpan C, Kizilkan O, Ezan M (eds) Progress in clean energy, volume 2. Springer, Cham

    Google Scholar 

  20. Zhang HY, Shao SS, Xiao R, Pan QW, Chen R, Zhang JB (2013) Three-dimensional simulation and experimental investigation of a novel biomass fast pyrolysis reactor. In: Qi H, Zhao B (eds) Cleaner Combustion and Sustainable World. ISCC 2011. Springer, Berlin, Heidelberg

    Google Scholar 

  21. Kumar H, Mohapatra SK, Singh RIJ (2018) Review on CFD modelling of fluidized bed combustion systems based on biomass and co-firing. Inst Eng India Ser C 99:449–474. https://doi.org/10.1007/s40032-017-0361-2

    Article  Google Scholar 

  22. He,J., Göransson, K., Söderlind, U. et al. (2012) Simulation of biomass gasification in a dual fluidized bed gasifier. Biomass Conv Bioref 2: 1. https://doi.org/10.1007/s13399-011-0030-2, 10

  23. Sonarkar PR, Chaurasia AS (2019) Thermal performance of three improved biomass-fired cookstoves using fuel wood, wood pellets and coconut shell. Environ Dev Sustain 21:1429–1449. https://doi.org/10.1007/s10668-018-0096-0

    Article  Google Scholar 

  24. El-Sayed SA, Mostafa ME (2019) Combustion and emission characteristics of Egyptian sugarcane bagasse and cotton stalks powders in a bubbling fluidized bed combustor. Waste Biomass Valor 10:2015–2035. https://doi.org/10.1007/s12649-018-0199-8

    Article  Google Scholar 

  25. Suga K (2016) Understanding and modelling turbulence over and inside porous media. Flow Turbulence Combust 96:717–756. https://doi.org/10.1007/s10494-015-9673-6

    Article  Google Scholar 

  26. Ottino GM, Fancello A, Falcone M, Bastiaans RJM, Goey LPH (2016) Combustion modeling including heat loss using flamelet generated manifolds: a validation study in openfoam. Flow Turbulence Combust 96:773–800. https://doi.org/10.1007/s10494-015-9666-5

  27. Martyushev SG, Sheremet MAJ (2012) Characteristics of Rosseland and P-1 approximations in modeling nonstationary conditions of convection-radiation heat transfer in an enclosure with a local energy source. Engin Thermophys 21:111–118. https://doi.org/10.1134/S1810232812020026

  28. Ushakov VV, Sidenko NA, Filipsons GA (2011) Computer analysis of the aerodynamics and heat exchange of a cylinder in a viscous oscillating flow. Conrol Comp Sci 45:346–360. https://doi.org/10.3103/S0146411611060083

    Article  Google Scholar 

  29. Adamczyk WP (2017) Application of the numerical techniques for modelling fluidization process within industrial scale boilers. Arch Computat Methods Eng 24:669–702. https://doi.org/10.1007/s11831-016-9186-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. X. Zheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yue, H.H., Yue, R. et al. Numerical simulation of combustion in a biomass briquette chain boiler. Biomass Conv. Bioref. 11, 1521–1536 (2021). https://doi.org/10.1007/s13399-019-00569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00569-0

Keywords

Navigation