Skip to main content
Log in

Combined pretreatments of eucalyptus sawdust for ethanol production within a biorefinery approach

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Eucalyptus sawdust is a residue from the pulp and timber industries which can be used as a raw material in a biorefinery. In this work, two consecutive treatment steps were applied to eucalyptus sawdust from a pulp mill, as a fractionation strategy, to recover and preserve lignocellulosic components while enhancing enzyme accessibility to cellulose. The first treatment step assayed was autohydrolysis (170 °C, 40 min). It was followed by (a) mechanical refining (3000 rpm, 0.5 mm), (b) kraft pulping (155 °C, 90–140 min, alkali charge 2.1–3.4%), or (c) soda pulping (155 °C, 90 min, alkali charge 2.4–4.0% NaOH). The remaining solid fractions were enzymatically hydrolyzed using 25 FPU/g of Cellic CTec 2 from Novozymes and a solid content of 13%. The efficiency of the enzymatic hydrolysis was higher than 70% in the case of an additional kraft or soda pulping while only autohydrolysis led to efficiencies lower than 60%. The best hydrolysis parameters and lignin and xylose recovery yields were obtained for autohydrolysis followed for a kraft pulping (cellulose conversion up to 71%, cellulose hydrolysis 95% at 48 h, lignin and xylose recovery 99 and 85%, respectively). The treated solid that reached the highest enzymatic yields was fermented using Saccharomyces cerevisiae in a 3.5-L reactor. The highest bioethanol yield was found for the autohydrolysis-treated solids followed by soda pulping, reaching a value of 250 L of ethanol per tonne of sawdust. Under this condition of combined treatments, 300 kg lignin/t sawdust and 120 kg xylose/t sawdust can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    Google Scholar 

  2. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  3. Farinha e Silva CA, Rodrigues Neves M, Porto M (2017) A industria de celulose e papel no Brasil. Guia ABTCP - Fornecedores & Fabricantes: 16–25

  4. Uruguay XXI (2017) Sector Forestal- Oportunidades de Inversión. In: Sect. For. Invers. http://www.uruguayxxi.gub.uy/inversiones/wp-content/uploads/sites/3/2014/09/Sector-Forestal-Uruguay-XXI-2014.pdf. Accessed 15 Oct 2017

  5. ODEPA (2015) Produccion de la industria forestal. http://www.odepa.cl/produccion-de-la-industria-forestal-4/. Accessed 15 Feb 2016

  6. McIntosh S, Zhang Z, Palmer J, Wong H-H, Doherty OS, Vancov T (2016) Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels Bioprod Biorefin 10:346–358. https://doi.org/10.1002/bbb.1651

    Article  Google Scholar 

  7. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026

    Article  Google Scholar 

  8. Bozell JJ (2010) An evolution from pretreatment to fractionation will enable successful development of the integrated biorefinery. BioResources 5:1326–1327

    Google Scholar 

  9. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  10. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  Google Scholar 

  11. Gütsch JS, Nousiainen T, Sixta H (2012) Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour Technol 109:77–85. https://doi.org/10.1016/j.biortech.2012.01.018

    Article  Google Scholar 

  12. Sun S, Cao X, Sun S, Xu F, Song X, Sun RC, Jones GL (2014) Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol Biofuels 7:1–12. https://doi.org/10.1186/s13068-014-0116-8

    Article  Google Scholar 

  13. Smook GA (2003) Handbook for pulp & paper technologists, 3rd edn. Tappi Press, Vancouver

    Google Scholar 

  14. Jones BW, Venditti R, Park S, Jameel H, Koo B (2013) Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresour Technol 147:353–360. https://doi.org/10.1016/j.biortech.2013.08.030

    Article  Google Scholar 

  15. Park J, Jones B, Koo B, Chen X, Tucker M, Yu J, Pschorn T, Venditti R, Park S (2016) Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour Technol 199:59–67. https://doi.org/10.1016/j.biortech.2015.08.059

    Article  Google Scholar 

  16. Kim SM, Dien BS, Singh V (2016) Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnol Biofuels 9:1–15. https://doi.org/10.1186/s13068-016-0505-2

    Article  Google Scholar 

  17. Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712. https://doi.org/10.1016/j.biortech.2010.06.093

    Article  Google Scholar 

  18. Rodríguez-Quinele V, Clavijo L, Cabrera MN (2015) Valorization prior to combustion: removal of hemicelluloses from eucalyptus sawdust . In: 2do Simposio Internacional sobre Materiales Lignocelulósicos. Concepcion-Chile

  19. Gullichsen J (1999) Fiber line operations. In: Gullichsen J, Fogelholm CJ (eds) Chemical pulping. Fapet Oy, Jyväskylä, Finland, Chapter 2, p A18-A243

  20. Cabrera MN, Bariani M, Guarino J, Clavijo L, Guigou MD, Vique M, Ferrari MD, Lareo C, Cassella N (2017) Autohydrolisis / kraft pulping as a pretreatment for bioethanol, furfural and acetic acid production. In: 8th International Colloquium on Eucalyptus Pulp Proceedings. Concepción-Chile

  21. TAPPI (2007) Solvent extractives of wood and pulp. T 204 cm-07

  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure (LAP), NREL/TP-510-42623. Golden (CO)- USA

  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42622. Golden (CO)- USA

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42618. Golden (CO)- USA

  25. Overend R, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatment. Philos Trans R Soc Lond A 321:523–536

    Article  Google Scholar 

  26. Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley & Sons, Inc, United States of America

    Google Scholar 

  27. Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491. https://doi.org/10.1016/j.fuel.2014.06.061

    Article  Google Scholar 

  28. Ishiguro M, Endo T (2015) Effect of the addition of calcium hydroxide on the hydrothermal-mechanochemical treatment of eucalyptus. Bioresour Technol 177:298–301. https://doi.org/10.1016/j.biortech.2014.10.135

    Article  Google Scholar 

  29. Ishiguro M, Endo T (2014) Addition of alkali to the hydrothermal-mechanochemical treatment of eucalyptus enhances its enzymatic saccharification. Bioresour Technol 153:322–326. https://doi.org/10.1016/j.biortech.2013.12.015

    Article  Google Scholar 

  30. de Carvalho DM, de Queiroz JH, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crop Prod 94:932–941. https://doi.org/10.1016/j.indcrop.2016.09.069

    Article  Google Scholar 

  31. de Carvalho DM, Sevastyanova O, de Queiroz JH, Colodette JL (2016) Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw. Energ Convers Manage 124:315–324. https://doi.org/10.1016/j.enconman.2016.07.029

  32. Cebreiros F, Ferrari MD, Lareo C (2017) Combined autohydrolysis and alkali pretreatments for cellulose enzymatic hydrolysis of Eucalyptus grandis wood. Biomass Conv Biorefin 8:33–42. https://doi.org/10.1007/s13399-016-0236-4

  33. Cebreiros F, Guigou MD, Cabrera MN (2017) Integrated forest biorefineries: recovery of acetic acid as a by-product from eucalyptus wood hemicellulosic hydrolysates by solvent extraction. Ind Crop Prod 109:101–108. https://doi.org/10.1016/j.indcrop.2017.08.012

    Article  Google Scholar 

  34. Rodríguez-López J, Romaní A, Gonzalez-Muñoz J, Garrote G, Parajo JC (2012) Extracting value-added products before pulping : hemicellulosic ethanol from Eucalyptus globulus wood. Holzforschung 66:591–599. https://doi.org/10.1515/hf-2011-0204

    Article  Google Scholar 

  35. Sjöström E (1993) Wood chemistry—fundamentals and applications, 2nd edn. Academic Press, Inc., California

    Google Scholar 

  36. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007

    Article  Google Scholar 

  37. Sambusiti C, Licari A, Solhy A, Aboulkas A, Cacciaguerra T, Barakat A (2015) One-pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse. Bioresour Technol 181:200–206. https://doi.org/10.1016/j.biortech.2015.01.058

    Article  Google Scholar 

  38. Marzialetti T, Salazar JP, Ocampos C, Chandra R, Chung P, Saddler J, Parra C (2014) Second-generation ethanol in Chile: optimisation of the autohydrolysis of Eucalyptus globulus. Biomass Conv Biorefin 4:125–135. https://doi.org/10.1007/s13399-014-0114-x

  39. Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312. https://doi.org/10.1016/j.fuel.2011.12.013

    Article  Google Scholar 

  40. Reina L, Botto E, Mantero C, Moyna P, Menéndez P (2016) Production of second generation ethanol using Eucalyptus dunnii bark residues and ionic liquid pretreatment. Biomass Bioenergy 93:116–121. https://doi.org/10.1016/j.biombioe.2016.06.023

    Article  Google Scholar 

  41. Lienqueo ME, Ravanal MC, Pezoa-Conte R, Cortínez V, Martínez L, Niklitschek T, Salazar O, Carmona R, García A, Hyvärinen S, Mäki-Arvela P, Mikkola J-P (2016) Second generation bioethanol from Eucalyptus globulus Labill and Nothofagus pumilio: ionic liquid pretreatment boosts the yields. Ind Crop Prod 80:148–155. https://doi.org/10.1016/j.indcrop.2015.11.039

    Article  Google Scholar 

  42. Chiarello LM, Ramos CEA, Neves PV, Ramos LP (2016) Production of cellulosic ethanol from steam-exploded Eucalyptus urograndis and sugarcane bagasse at high total solids and low enzyme loadings. Sustain Chem Process 4:15. https://doi.org/10.1186/s40508-016-0059-4

    Article  Google Scholar 

  43. Romaní A, Ruiz HA, Teixeira JA, Domingues L (2016) Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach. Renew Energy 95:1–9. https://doi.org/10.1016/j.renene.2016.03.106

    Article  Google Scholar 

  44. Liguori R, Ventorino V, Pepe O, Faraco V (2016) Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Appl Microbiol Biotechnol 100:597–611. https://doi.org/10.1007/s00253-015-7125-9

    Article  Google Scholar 

  45. Fockink DH, Chiarello LM, Ramos LP (2016) Enzymatic hydrolysis with Cellic CTec3 at high total solids and cellulosic ethanol production. In: XII Seminário Brasileiro de Tecnologia Enzimática ENZITEC 2016. Caxias do Sul (UCS)

Download references

Acknowledgements

The financial support was provided by the Agencia Nacional de Investigación e Innovación (ANII-FSE-2014-102701, Uruguay). The authors thank UPM Fray Bentos for kindly supplying the wood pinchips used and Novozymes Latin America Ltda. for supplying the enzymatic complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lareo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guigou, M., Cabrera, M.N., Vique, M. et al. Combined pretreatments of eucalyptus sawdust for ethanol production within a biorefinery approach. Biomass Conv. Bioref. 9, 293–304 (2019). https://doi.org/10.1007/s13399-018-0353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-018-0353-3

Keywords

Navigation