Skip to main content
Log in

Moisture effect on fluidization behavior of loblolly pine Wood grinds

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The impact of moisture content (MC of 8 to 27 % wet basis) on physical properties (particle size distribution, average size using Feret, chord, Martins, surface-volume, and area diameter measurement schemes, bulk density, and particle density), fluidization behavior, and minimum fluidization velocities (U mf) of loblolly pine wood grinds were studied. A new correlation for predicting the U mf of loblolly pine wood grinds at different moisture contents was also developed. Results showed that bulk density, particle density, and porosity of grinds were significantly affected by increase in MC (p < 0.05). Diameter of the grinds measured using Feret measurement scheme was consistently the highest while those measured by surface-volume scheme were consistently the lowest with the measured Feret-based diameter about three times the surface-volume based diameters. Particle size data showed that variations in sizes of particle within a sample reduced with increase in MC (coefficient of variation value was 90 at 8.45 % MC and 40 at 27.02 % MC). Generally, as MC increased, the minimum fluidization velocity values increased. The minimum fluidization velocity (Umf) was found to be 0.2 m/s for 8 % MC, 0.24 m/s at 14.86 % MC, 0.28 m/s at 19.86 % MC, and 0.32 m/s for 27.02 % MC. The correlation developed predicted the experimental data with mean relative deviation that was less than 10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. EIA (2015) Short-term energy outlook (STEO). U. S Energy Information Administration, Washington D.C.

  2. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  Google Scholar 

  3. Climent M, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547

    Article  Google Scholar 

  4. DOE (2011) US Billion-Ton Update: Biomass supply for a bioenergy and bioproducts industry. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. 227p.

  5. Wear D, Gries J (2011) The southern Forest futures project. Technical Report, USDA Forest Service, General Technical Report SRS, Asheville, NC

    Google Scholar 

  6. Frederick W, Lien S, Courchene C, DeMartini N, Ragauskas A, Iisa K (2008) Co-production of ethanol and cellulose fiber from southern pine: a technical and economic assessment. Biomass Bioenergy 32:1293–1302

    Article  Google Scholar 

  7. Smith WB, Miles PD, Perry CH, Pugh SA (2009) Forest resources of the United States, 2007: a technical document supporting the forest service 2010 RPA Assessment. General Technical Report-USDA Forest Service (WO-78), Washington, DC.

  8. Bhaskar T, Bhavya B, Singh R, Naik DV, Kumar A, Goyal HB (2011) Thermochemical conversion of biomass to biofuels. In biofuels. In: Pandey A, Larroche C, Ricke S, Dussap C, Gnansounou E (eds) Alternative feedstocks and conversion process. Academic Press, New York, NY, pp. 51–77

    Google Scholar 

  9. Oliveira TJP, Cardoso CR, Ataíde CH (2013) Bubbling fluidization of biomass and sand binary mixtures: minimum fluidization velocity and particle segregation. Chem Eng Process Process Intensif 72:113–121. doi:10.1016/j.cep.2013.06.010

    Article  Google Scholar 

  10. Tumuluru JS, Tabil LG, Song Y, Iroba KL, Meda V (2014) Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws. Biomass Bioenergy 60:58–67. doi:10.1016/j.biombioe.2013.10.011

    Article  Google Scholar 

  11. Littlefield B, Fasina OO, Shaw J, Adhikari S, Via B (2011) Physical and flow properties of pecan shells—particle size and moisture effects. Powder Technol 212:173–180. doi:10.1016/j.powtec.2011.05.011

    Article  Google Scholar 

  12. Probst K, Kingsly A, Pinto R, Bali R, Krishnakumar P, Ileleji K (2013) The effect of moisture content on the grinding performance of corn and corncobs by hammermilling. Trans ASABE 56:10251–11033

    Google Scholar 

  13. Fasina O (2006) Flow and physical properties of switchgrass, peanut hull, and poultry litter. Trans ASABE 49:721–728

    Article  Google Scholar 

  14. Wormsbecker M, Pugsley T (2008) The influence of moisture on the fluidization behaviour of porous pharmaceutical granule. Chem Eng Sci 63:4063–4069. doi:10.1016/j.ces.2008.05.023

    Article  Google Scholar 

  15. Clarke KL, Pugsley T, Hill GA (2005) Fluidization of moist sawdust in binary particle systems in a gas solid fluidized bed. Chem Eng Sci 60:6909–6918. doi:10.1016/j.ces.2005.06.004

    Article  Google Scholar 

  16. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  17. Rao R, Ram T, Bheemarasetti JV (2001) Minimum fluidization velocities of mixtures of biomass and sands. Energy 26:633–644. doi:10.1016/S0360-5442(01)00014-7

    Article  Google Scholar 

  18. Shao Y, Ren B, Jin B, Zhong W, Hu H, Chen X, Sha C (2013) Experimental flow behaviors of irregular particles with silica sand in solid waste fluidized bed. Powder Technol 234(0):67–75. doi:10.1016/j.powtec.2012.09.019

    Article  Google Scholar 

  19. Yang W-C (2007) Modification and re-interpretation of Geldart's classification of powders. Powder Technol 171(2):69–74. doi:10.1016/j.powtec.2006.08.024

    Article  Google Scholar 

  20. Geldart D (1972) The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technol 6(4):201–215. doi:10.1016/0032-5910(72)83014-6

    Article  Google Scholar 

  21. Olatunde G, Fasina O, Adhikari S, McDonald TP, Duke SR (2016) Size measurement method for loblolly pine grinds and influence on predictability of fluidization. Can Biosyst Eng 58:4.1–4.10

    Article  Google Scholar 

  22. Rhodes M (2008) Particle size analysis. Introduction to Particle Technology, First edition. John Wiley & Sons, Ltd, Hoboken, NJ. doi: 10.1002/9780470727102.ch1.

  23. Aznar MP, Gracia-Gorria FA, Corella J (1992) Minimum and maximum velocities for fluidization for mixtures of agricultural and forest residues with a second fluidized solid. II. Experimental results for different mixtures. Int Chem Eng 32:103–113

    Google Scholar 

  24. ASTM (2006) Standard Test Method for Moisture Analysis of Particulate Wood Fuels," ASTM International, West Conshohocken, PA, 2006, doi: 10.1520/E0870-82R06.

  25. Allen T (1997) Particle Size Measurement Volume 2: Surface Area and Pore Size Determination. Chapman and Hall, London, UK

    Google Scholar 

  26. Kunii D, Levenspiel O (1991) Fluidization engineering, vol 2. Butterworth-Heinemann Boston, MA

    Google Scholar 

  27. Gupta CK, Sathiyamoorthy D (1998) Fluid bed technology in materials processing. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  28. SAS (2011) The SAS system for Windows. Release 9.2. edn. SAS Institute, Cary, NC.

  29. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. Biofuels 4:111–127

    Article  Google Scholar 

  30. Hehar G, Fasina O, Adhikari S, Fulton J (2014) Ignition and volatilization behavior of dust from loblolly pine wood. Fuel Process Technol 127:117–123. doi:10.1016/j.fuproc.2014.04.036

    Article  Google Scholar 

  31. Gil M, Schott D, Arauzo I, Teruel E (2013) Handling behavior of two milled biomass: SRF poplar and corn Stover. Fuel Process Technol 112:76–85. doi:10.1016/j.fuproc.2013.02.024

    Article  Google Scholar 

  32. Deshpande SD, Bal S, Ojha TP (1993) Physical properties of soybean. J Agric Eng Res 56:89–98. doi:10.1006/jaer.1993.1063

    Article  Google Scholar 

  33. Cui H, Grace JR (2007) Fluidization of biomass particles: a review of experimental multiphase flow aspects. Chem Eng Sci 62:45–55

    Article  Google Scholar 

  34. Mattsson JE, Kofman PD (2002) Method and apparatus for measuring the tendency of solid biofuels to bridge over openings. Biomass Bioenergy 22:179–185. doi:10.1016/S0961-9534(01)00067-8

    Article  Google Scholar 

  35. Yu A, Standish N (1993) Characterisation of non-spherical particles from their packing behaviour. Powder Technol 74:205–213

    Article  Google Scholar 

  36. Manickam IN, Suresh S (2011) Effect of moisture content and particle size on bulk density, porosity, particle density and coefficient of friction of coir pith. International Journal of Engineering Science and Technology 3:2596–2602

    Google Scholar 

  37. Passarini L, Malveau C, Hernandez RE (2014) Water state study of wood structure of four hardwoods below fiber saturation point with nuclear magnetic resonance. Wood Fiber Sci 46:480–488

    Google Scholar 

  38. Almeida G, Hernández R (2006) Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol 40:599–613

    Article  Google Scholar 

  39. Colley Z, Fasina O, Bransby D, Lee Y (2006) Moisture effect on the physical characteristics of switchgrass pellets. Trans ASABE 49:1845–1851

    Article  Google Scholar 

  40. Bernhart M, Fasina O (2009) Moisture effect on the storage, handling and flow properties of poultry litter. Waste Manag 29:1392–1398

    Article  Google Scholar 

  41. Mani S, Tabil LG, Sokhansanj S (2004) Grinding performance and physical properties of wheat and barley straws, corn Stover and switchgrass. Biomass Bioenergy 27:339–352. doi:10.1016/j.biombioe.2004.03.007

    Article  Google Scholar 

  42. Zhou B, Ileleji K, Ejeta G (2008) Physical property relationships of bulk corn Stover particles. Trans ASABE 51:581–590

    Article  Google Scholar 

  43. Srivastava A, Sundaresan S (2002) Role of wall friction in fluidization and standpipe flow. Powder Technol 124:45–54

    Article  Google Scholar 

  44. Gauthier D, Zerguerras S, Flamant G (1999) Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization. Chem Eng J 74:181–196. doi:10.1016/S1385-8947(99)00075-3

    Article  Google Scholar 

  45. Zhang Y, Jin B, Zhong W (2009) Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed. Chem Eng Process Process Intensif 48:745–754. doi:10.1016/j.cep.2008.09.004

    Article  Google Scholar 

  46. Zhong W, Jin B, Zhang Y, Wang X, Xiao R (2008) Fluidization of biomass particles in a Gas−Solid fluidized bed. Energy Fuel 22:4170–4176. doi:10.1021/ef800495u

    Article  Google Scholar 

  47. Nemec D, Levec J (2005) Flow through packed bed reactors: 1. Single-phase flow. Chem Eng Sci 60:6947–6957. doi:10.1016/j.ces.2005.05.068

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding support from USDA-NIFA Project through the Southeast Partnership for Integrated Biomass Supply Systems (IBSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Fasina..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olatunde., G., Fasina., O., McDonald., T. et al. Moisture effect on fluidization behavior of loblolly pine Wood grinds. Biomass Conv. Bioref. 7, 207–220 (2017). https://doi.org/10.1007/s13399-016-0223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0223-9

Keywords

Navigation