Skip to main content

Advertisement

Log in

Productive potential and quality of rice husk and straw for biorefineries

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The use of lignocellulosic biomass to obtain high value-added products and biofuels has been highlighted in the last years, introducing the biorefinery concept. Among the types of lignocellulosics that can be used in biorefineries, there are rice husk and rice straw, byproducts of rice production usually treated as waste. Every year, 650–975 million tons of rice straw and 800 million tons of rice husk are generated during cultivation and processing of rice. This paper accomplishes a review of potential utilization of rice husk and rice straw in biorefineries approaching its chemical, biochemical, and thermochemical conversions in biofuels, biomaterials, biochemicals, bioenergy, and other high value-added products. The composition of lignocellulosic biomass, as well as the intra and intermolecular interactions among cellulose, hemicelluloses, and lignin in the biomass structure responsible for its recalcitrant characteristics are discussed. The need of performing a pretreatment prior to bioconversion due to biomass recalcitrance and different possible bioconversion processes are approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang C-F, Jiang Y-F, Guo G-L, Hwang W-S (2013) Method of 2,3-butanediol production from glycerol and acid-pretreated rice straw hydrolysate by newly isolated strains: pre-evaluation as an integrated biorefinery process. Bioresour Technol 135:446–453. doi:10.1016/j.biortech.2012.10.141

    Article  Google Scholar 

  2. Kim I, Lee B, Park J-Y, Choi S-A, Hana J-I (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567. doi:10.1016/j.carbpol.2013.08.092

    Article  Google Scholar 

  3. Santos F, Queiroz JH, Colodette J, Souza CJ (2013) In: Santos F, Colodette J, Queiroz JH (eds) Bioenergia e Biorrefinaria—Cana-de-Açúcar e Espécies Florestais. Editora UFV, Viçosa, cap. 4

    Google Scholar 

  4. Cortez LAB, Lora EES, Gómez EO (2008) Biomassa Para energia. Editora da Unicamp, Campinas

    Google Scholar 

  5. Yang S-T, Yu M (2013) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, First edn. John Wiley & Sons, Inc., New Jersey

  6. Vaz S Jr (2013) In: Santos F, Colodette J, Queiroz JH (eds) Bioenergia e Biorrefinaria—Cana-de-Açúcar e Espécies Florestais. Editora UFV, Viçosa, cap. 9

    Google Scholar 

  7. Cheali P, Posada JA, Gernaey KV, Sin G (2015) Upgrading of lignocellulosic biorefinery to value added chemicals: sustainability and economics of bioethanol-derivatives. Biomass Bioenergy 75:282–300. doi:10.1016/j.biombioe.2015.02.030

    Article  Google Scholar 

  8. Zhang G, Huang K, Jiang X, Huang D, Yang Y (2013) Acetylation of rice straw for thermoplastic applications. Carbohydr Polym 96:218–226. doi:10.1016/j.carbpol.2013.03.069

    Article  Google Scholar 

  9. Yam RCM, Mak DMT (2014) A cleaner production of rice husk-blended polypropylene ecocomposite by gas-assisted injection moulding. J Clean Prod 67:277–284. doi:10.1016/j.jclepro.2013.12.038

    Article  Google Scholar 

  10. Gu F, Wang W, Jing L, Jin Y (2013) Effects of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw. Bioresour Technol 149:375–382. doi:10.1016/j.biortech.2013.09.064

    Article  Google Scholar 

  11. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energ Rev 43:1427–1445. doi:10.1016/j.rser.2014.11.092

    Article  Google Scholar 

  12. Santos FA, Queiroz JH, Colodette JL, Fernandes SA, Guimarães VM, Rezende ST (2012) Potencial da palha de cana-de-açúcar Para produção de etanol. Quim Nov. 35(5):1004–1010

  13. Gómez EO, Souza RTG, Rocha GJM, Almeida E, Cortez LAB (2010) In: Cortez LAB (ed) Bioetanol de cana-de-açúcar: P&D Para produtividade sustentabilidade. Edgard Blücher Ltda, São Paulo, cap. 9

    Google Scholar 

  14. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. doi:10.1016/j.rser.2012.11.069

    Article  Google Scholar 

  15. Mabee WE, Mcfarlane PN, Saddler JN (2011) Biomass availability for lignocellulosic ethanol production. Biomass Bioenergy 35:4519–4529. doi:10.1016/j.biombioe.2011.06.026

    Article  Google Scholar 

  16. Fengel D, Wegener G (1989) Wood chemistry ultrastructure reactions. Walter de Gruyter, Berlín

    Google Scholar 

  17. CONAB. Companhia Nacional de Abastecimento (2015) Perspectivas para a agropecuária. Safra: 2015/2016, Produtos de Verão/Companhia Nacional de Abastecimento. v.3, Conab:Brasília

  18. Food and Agriculture Organization of The United Nations (FAO) (2015) Rice market monitor. 18(1):2–40

  19. USDA, United States Department of Agriculture; FAS, Foreign Agriculture Service (2016) Grain: world markets and trade. USDA, Washington, DC

  20. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(2):578–597. doi:10.1016/j.rser.2009.10.003

    Article  Google Scholar 

  21. Demont M, Stein AJ (2013) Global value of GM rice: a review of expected agronomic and consumer benefits. New Biotechnol 30(5):426–436. doi:10.1016/j.nbt.2013.04.004

    Article  Google Scholar 

  22. Santos AB, Stone LF, Vieira NRA (2006) A Cultura do arroz no Brasil, 2 edn. Embrapa Arroz e Feijão, Santo Antônio de Goiás

    Google Scholar 

  23. Menezes RR, Fagury-Neto E, Fernandes MC, Souto PM, Kiminami RHGA (2008) Obtenção de mulita porosa a partir da sílica da Casca de arroz e do acetato de alumínio. Cerâmica 54:245–252

    Article  Google Scholar 

  24. Junqueira OM, Duarte KF, Cancherini LC, Araújo LF, Oliveira MC, Garcia EA (2009) Composição química, valores de energia metabolizável e aminoácidos digestíveis de subprodutos do arroz Para frangos de corte. Cienc Rural 39(8):2497–2503

    Article  Google Scholar 

  25. Della VP, Kühn I, Hotza D (2001) Caracterização de cinza de Casca de arroz Para uso Como matéria-prima na fabricação de refratários de sílica. Quim Nov. 24(6):778–782

  26. Liu C-M, S-Y W, Chu C-Y, Chou Y-P (2014) Biohydrogen production from rice straw hydrolyzate in a continuously external circulating bioreactor. Int J Hydrog Energy 39:19317–19322. doi:10.1016/j.ijhydene.2014.05.175

    Article  Google Scholar 

  27. Ludueña L, Fasce D, Alvarez VA, Stefani PM (2011) Nanocellulose from rice husk following alkaline treatment to remove silica. Bioresources 6(2):1440–1453

    Google Scholar 

  28. Ranjan A, Moholkar VS (2013) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel 112:567–571. doi:10.1016/j.fuel.2011.03.030

    Article  Google Scholar 

  29. Ekpeni LEN, Benyounis KY, Nkem-Ekpeni F, Stokes J, Olabi AG (2014) Energy diversity through renewable energy source (RES)—a case study of biomass. Energy Procedia 61:1740–1747. doi:10.1016/j.egypro.2014.12.202

    Article  Google Scholar 

  30. Park J-Y, Kanda E, Fukushima A, Motobayashi K, Nagata K, Kondo M, Ohshita Y, Morita S, Tokuyasu K (2011) Contents of various sources of glucose and fructose in rice straw, a potential feedstock for ethanol production in Japan. Biomass Bioenergy 35:3733–3735. doi:10.1016/j.biombioe.2011.05.032

    Article  Google Scholar 

  31. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholamib M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93. doi:10.1016/j.rser.2013.06.033

    Article  Google Scholar 

  32. Ang TN, Ngoh GC, Chua ASM (2013) Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Bioresour Technol 135:116–119. doi:10.1016/j.biortech.2012.09.045

    Article  Google Scholar 

  33. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  Google Scholar 

  34. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33:1680–1686. doi:10.1016/j.biombioe.2009.09.001

    Article  Google Scholar 

  35. Bazargan A, Bazargan M, Mckay G (2015) Optimization of rice husk pretreatment for energy production. Renew Energy 77:512–520. doi:10.1016/j.renene.2014.11.07

    Article  Google Scholar 

  36. Menardo S, Cacciatore V, Balsari P (2015) Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion. Bioresour Technol 180:154–161. doi:10.1016/j.biortech.2014.12.104

    Article  Google Scholar 

  37. Serna LVD, Alzate CEO, Alzate CAC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. doi:10.1016/j.biortech.2015.09.078

    Article  Google Scholar 

  38. Gao M, Xu F, Li S, Ji X, Chen S, Zhang D (2010) Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosyst Eng 106:470–475. doi:10.1016/j.biosystemseng.2010.05.011

    Article  Google Scholar 

  39. Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456. doi:10.1016/j.biortech.2013.11.038

    Article  Google Scholar 

  40. Santos FA, Queiroz JH, Colodette JL, Manfredi M, Queiroz MELR, Caldas C, Soares FEF (2014) Quim Nov. 37(1):56–62

  41. Imman S, Arnthong J, Burapatana V, Champreda V, Laosiripojana N (2014) Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chem Eng J 278:85–91. doi:10.1016/j.cej.2014.12.032

    Article  Google Scholar 

  42. Rodríguez A, Moral A, Sánchez R, Requejo A, Jiménez L (2009) Influence of variables in the hydrothermal treatment of rice straw on the composition of the resulting fractions. Bioresour Technol 100(20):4863–4866. doi:10.1016/j.biortech.2009.04.030

    Article  Google Scholar 

  43. Mohanram S, Rajan K, Carrier DJ, Nain L, Arora A (2015) Insights into biological delignification of rice straw by Trametes hirsuta and Myrothecium roridum and comparison of saccharification yields with dilute acid pretreatment. Biomass Bioenergy 76:54–60. doi:10.1016/j.biombioe.2015.02.031

    Article  Google Scholar 

  44. Shinozaki Y, Kitamoto HKJ (2011) Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. Biosci Bioeng 111(3):320–325. doi:10.1016/j.jbiosc.2010.11.003

    Article  Google Scholar 

  45. Hongzhang C, Bin Y, Shengying J (2011) Production of levulinic acid from steam exploded rice straw via solid superacid, S2O8 2−/ZrO2—SiO2—Sm2O3. Bioresour Technol 102:3568–3570. doi:10.1016/j.biortech.2010.10.018

    Article  Google Scholar 

  46. He L, Huang H, Lei Z, Liu C, Zhang Z (2014) Enhanced hydrogen production from anaerobic fermentation of rice straw pretreated by hydrothermal technology. Bioresour Technol 171:145–151. doi:10.1016/j.biortech.2014.08.049

    Article  Google Scholar 

  47. Hideno A, Inoue H, Tsukahara K, Yano S, Fang X, Endo T, Sawayama S (2011) Production and characterization of cellulases and hemicellulases by Acremonium cellulolytic ususing rice straw subjected to various pretreatments as the carbon source. Enzym Microb Technol 48:162–168. doi:10.1016/j.enzmictec.2010.10.005

    Article  Google Scholar 

  48. Okamoto K, Nitta Y, Maekawa N, Yanase H (2011) Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzym Microb Technol 48:273–277. doi:10.1016/j.enzmictec.2010.12.001

    Article  Google Scholar 

  49. Sousa-Aguiar EF, Appel LG, Zonetti PC, Fraga AC, Bicudo AA, Fonseca I (2014) Some important catalytic challenges in the bioethanol integrated biorefinery. Catal Today 234:13–23. doi:10.1016/j.cattod.2014.02.016

    Article  Google Scholar 

  50. Lin K-H, Huang M-H, Chang AC-C (2013) Liquid phase reforming of rice straw for furfural production. Int J Hydrog Energy 38:15794–15800. doi:10.1016/j.ijhydene.2013.06.088

    Article  Google Scholar 

  51. Qin L, Qiu J, Liu M, Ding S, Shao L, Lü S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778. doi:10.1016/j.cej.2010.11.039

    Article  Google Scholar 

  52. Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crop Prod 28:63–72. doi:10.1016/j.indcrop.2008.01.007

    Article  Google Scholar 

  53. Eom I-Y, Kim J-Y, Lee S-M, Cho T-S, Yeo H, Choi J-W (2013) Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza satival.) by fluidized bed pyrolyzer for future biorefinery approach. Bioresour Technol 128:664–672. doi:10.1016/j.biortech.2012.09.082

    Article  Google Scholar 

  54. Liu Y, Yuan X-Z, Huang H-J, Wang X-L, Wang H, Zeng G-M (2013) Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol–water). Fuel Process Technol 112:93–99. doi:10.1016/j.fuproc.2013.03.005

    Article  Google Scholar 

  55. Xiao N, Luo H, Wei W, Tang Z, Hu B, Kong L, Sun Y (2015) Microwave-assisted gasification of rice straw pyrolytic biochar promoted by alkali and alkaline earth metals. J Anal Appl Pyrolysis 112:173–179. doi:10.1016/j.jaap.2015.02.001

    Article  Google Scholar 

  56. Okeh OC, Onwosi CO, Odibo FJC (2014) Biogas production from rice husks generated from various rice mills in Ebonyi state, Nigeria. Renew Energy 62:204–208. doi:10.1016/j.renene.2013.07.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F., Machado, G., Faria, D. et al. Productive potential and quality of rice husk and straw for biorefineries. Biomass Conv. Bioref. 7, 117–126 (2017). https://doi.org/10.1007/s13399-016-0214-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0214-x

Keywords

Navigation