Skip to main content

Advertisement

Log in

Production of ethanol from the hemicellulosic fraction of sunflower meal biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Researches on second-generation ethanol, produced from agroindustrial wastes, have demanded special attention as a possible solution to energy sustainability. Such production is based on lignocellulosic fiber conversion, which generates fermentable sugars that are biotransformed into ethanol. This work aimed at evaluating ethanol production by the yeast Pichia stipitis ATCC 58376 in the hemicellulosic hydrolysate of sunflower meal biomass, a subproduct generated by sunflower oil manufactures. Sunflower meal was submitted to dilute acid hydrolysis with 6 % (w/v) H2SO4 in autoclave, at 121 °C, for 20 min and resulted in a hemicellulosic hydrolysate with high concentration of sugars (24.98 g/L xylose, 26.55 g/L glucose, and 6.51 g/L arabinose) and low amounts of toxic compounds (3.04 g/L total phenols, 0.58 g/L acetic acid, 0.40 g/L furfural, and 0.09 g/L hydroxymethylfurfural). The fermentations of the detoxified hydrolysate were conducted in Erlenmeyer flasks at 30 °C, initial pH 5.5, under different agitation speeds (100, 150, and 200 rpm). The best ethanol production (8.8 g/L ethanol, yield of 0.23 g/g, and productivity of 0.12 g/L h) was attained at 200 rpm. The results demonstrate that sunflower meal is a promising biomass for ethanol production from its hemicellulosic fraction. In addition, the hemicellulosic hydrolysate has the advantage of not requiring a sugar concentration step, which contributes to the economic viability of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R, Sreerama L (2011) Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mol Biol Rev 6(8):172–182

    Google Scholar 

  2. Zhang W, Geng A (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Fuel 5:1–11

    Google Scholar 

  3. Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol. doi:10.1155/2012/989572

    Google Scholar 

  4. Lee SH, Kodaki T, Park YC, Seo JH (2012) Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J Biotechnol 158(4):184–91

    Article  Google Scholar 

  5. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524

    Article  Google Scholar 

  6. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40

    Article  Google Scholar 

  7. Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulosic acid prehydrolysate. J Appl Microbiol 90:208–215

    Article  Google Scholar 

  8. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87(1):17–27

    Article  MathSciNet  Google Scholar 

  9. Agbogbo FK, Wenger KS (2007) Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J Ind Microbiol Biot 34:723–727

    Article  Google Scholar 

  10. Kurian JK, Minu AK, Aditi B, Kishore VVN (2010) Bioconversion of hemicellulose hydrolysate of sweet sorghum bagasse to ethanol by using Pichia stipitis NCIM 3947 and Debaryomyces hansenii sp. Bioresource 5(4):2404–1416

    Google Scholar 

  11. Lin TH, Huang CF, Guo GL, Hwang WS, Huang SL (2012) Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresour Technol 116:314–319

    Article  Google Scholar 

  12. Evon P, Vandenbossche V, Ponta-Lier PY, Rigal L (2009) Aqueous extraction of residual oil from sunflower press cake using a twin-screw extruder: feasibility study. Ind Crop Prod 29(2–3):455–465

    Article  Google Scholar 

  13. Sakthiselvan P, Naveena B, Partha N (2012) Effect of medium composition and ultrasonication on xylanase production by Trichoderma harzianum MTCC 4358 on novel substrate. Afr J Biotechnol 11(57):12067–12077

    Google Scholar 

  14. Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98(10):2000–2009

    Article  Google Scholar 

  15. Mushtaq T, Sarwar M, Ahmad G, Mirza MA, Ahmad T, Noreen U, Mushtaq MMH, Kamran Z (2009) Influence of sunflower meal based diets supplemented with exogenous enzyme and digestible lysine on performance, digestibility and carcass response of broiler chickens. Anim Feed Sci Tech 149(3–4):275–286

    Article  Google Scholar 

  16. Lozano NBS, Vidal AT, Martínez-Liorens S, Mérida SN, Blanco JE, López AM, Torres MP, Cerdá MJ (2007) Growth and economic profit of gilthead sea bream (Sparus aurata, L.) fed sunflower meal. Aquaculture 272(1–4):528–534

    Article  Google Scholar 

  17. Musharaf (1991) Effect of graded levels of sunflower seed meal in broiler diets. Anim Feed Sci Tech 33(1–2):129–137

    Article  Google Scholar 

  18. Telli-Okur M, Eken-Saraçoğlu N (2006) Ethanol production from sunflower seed hull hydrolysate by Pichia stipitis under uncontrolled pH conditions in a bioreactor. Turkish J Eng Environ Sci 30:317–322

    Google Scholar 

  19. Telli-Okur M, Eken-Saraçoğlu N (2008) Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 99(7):2162–2169

    Article  Google Scholar 

  20. Jargalsaikhan O, Saraçoglu N (2009) Application of experimental design method for ethanol production by fermentation of sunflower seed hull hydrolysate using Pichia stipitis NRRL-124. Chem Eng Commun 196:93–103

    Article  Google Scholar 

  21. Sharma SK, Kaira KL, Kocher GS (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biomass Bioenergy 27:399–402

    Article  Google Scholar 

  22. Kamireddy SR, Schaefer C, Defrese M, Degenstein J, Ji Y (2012) Pretreatment and enzymatic hydrolysis of sunflower hulls for fermentable sugar production. Int J Agric Biol Eng 5(1):62–70

    Google Scholar 

  23. Gouveia ER, Nascimento RT, Souto-Maior AM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quím Nova 32:1500–1503

    Article  Google Scholar 

  24. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  Google Scholar 

  25. Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrolysis 76:285–289

    Article  Google Scholar 

  26. Ruiz E, Romero I, Moya M, Cara C, Vidal JD, Castro E (2013) Dilute sulfuric acid pretreatment of sunflower stalks for sugar production. Bioresour Technol 140:292–298

    Article  Google Scholar 

  27. Martin C, Alriksson B, Sjode A, Nilvebrant NO, Jonsson LJ (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol 137:339–352

    Google Scholar 

  28. Bellido C, Bolado S, Coca M, Lucas S, González-Benito G, García-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102:10868–10874

    Article  Google Scholar 

  29. Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Braz J Chem Eng 28(1):151–156

    Article  Google Scholar 

  30. Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biot 77(6):641–648

    Article  Google Scholar 

  31. Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41(11):2333–2336

    Article  Google Scholar 

  32. Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    Google Scholar 

  33. Stoutenburg RM, Perrotta JA, Amidon TE, Nakas JP (2008) Ethanol production from a membrane purified hemicellulosic hydrolysate derived from sugar maple by Pichia stipitis NRRL Y-7124. Bioresource 3(4):1349–1358

    Google Scholar 

  34. Silva JP, Mussatto SI, Roberto IC (2010) The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol 162(5):1306–1315

    Article  Google Scholar 

  35. Shupe AM, Liu S (2012) Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis. Appl Biochem Biotechnol 168(1):29–36

    Article  Google Scholar 

  36. Van Zyl C, Prior BA, du Preez JC (1991) Acetic acid inhibition of D-xylose fermentation by Pichia stipitis. Enzyme Microb Technol 13:82–86

    Article  Google Scholar 

  37. Delgenes JP, Moletta R, Navarro JM (1991) Xylose metabolism by Pichia stipitis: the effect of ethanol. Appl Microbiol Biotechnol 35:656–661

    Google Scholar 

  38. Sene L, Arruda PV, Oliveira SMM, Felipe MGA (2011) Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Braz J Microbiol 42(3):1141–1146

    Article  Google Scholar 

  39. Scordia D, Consentino SL, Lee JW, Jeffries TW (2012) Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenerg 39:296–305

    Article  Google Scholar 

  40. Arruda PV, Felipe MG (2009) Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol 58(3):274–278

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the company Caramuru SA for providing the sunflower meal and the Brazilian National Research Council (CNPq) and Itaipu Technological Park (PTI) for master’s degree scholarship to Danielle Camargo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Camargo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, D., Sene, L. Production of ethanol from the hemicellulosic fraction of sunflower meal biomass. Biomass Conv. Bioref. 4, 87–93 (2014). https://doi.org/10.1007/s13399-013-0096-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0096-0

Keywords

Navigation