Skip to main content
Log in

Optimal moment conditions for complete convergence for maximal normed weighted sums from arrays of rowwise independent random elements in Banach spaces

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

This work establishes complete convergence for maximal normed weighted sums from arrays of rowwise independent random elements taking values in a real separable stable type p Banach space or in a real separable Rademacher type p Banach space under optimal moment conditions. An extension of a result in Hu et al. (Stochas Anal Appl 39:177–193, 2021) is obtained as a special case of the main theorem. To establish the main result, which is a Baum–Katz–Hsu–Robbins–Erdös-type theorem for maximal normed weighted sums, we prove a Rosenthal-type inequality for maximal normed partial sums of independent random elements taking values in Rademacher type p Banach spaces. Moreover, the conditions for complete convergence in the main result are shown to completely characterize stable type p Banach spaces when \(1\le p< 2\). The sharpness of the results is illustrated by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adler, A., Rosalsky, A.: Some general strong laws for weighted sums of stochastically dominated random variables. Stoch. Anal. Appl. 5(1), 1–16 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, A., Rosalsky, A., Taylor, R.L.: Strong laws of large numbers for weighted sums of random elements in normed linear spaces. Int. J. Math. Math. Sci. 12(3), 507–529 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, P., Chen, P., Sung, S.H.: On complete convergence and the strong law of large numbers for pairwise independent random variables. Acta Math. Hungar. 142(2), 502–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120(1), 108–123 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, A.: On the strong law of large numbers. In: Ergodic Theory; Proceedings of an International Symposium Held et Tulane University, New Orleans, Louisiana, October, 1961 (F. B. Wright, ed.), pp. 21–53. Academic Press, New York (1963)

  6. Chen, L.H.Y., Raič, M., Thành, L.V.: On the error bound in the normal approximation for Jack measures. Bernoulli 27(1), 442–468 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales, 3rd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  8. Erdös, P.: On a theorem of Hsu and Robbins. Ann. Math. Stat. 20(2), 286–291 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gut, A.: Probability: A Graduate Course, 2nd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  10. Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33(2), 25–31 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, T.C., Móricz, F., Taylor, R.L.: Strong laws of large numbers for arrays of rowwise independent random variables. Acta Math. Hungar. 54(1–2), 153–162 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, T.-C., Rosalsky, A., Volodin, A., Zhang, S.: A complete convergence theorem for row sums from arrays of rowwise independent random elements in Rademacher type \(p\) Banach spaces. II. Stoch. Anal. Appl. 39(1), 177–193 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, W., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13(1), 234–253 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuczmaszewska, A., Szynal, D.: On complete convergence in a Banach space. Int. J. Math. Math. Sci. 17(1), 1–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Latała, R.: Estimation of moments of sums of independent real random variables. Ann. Probab. 25(3), 1502–1513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer–Verlag, Berlin (1991)

  17. Marcus, M.B., Woyczyński, W.A.: Stable measures and central limit theorems in spaces of stable type. Trans. Am. Math. Soc. 251, 71–102 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and Analysis, pp. 167–241. Springer (1986)

  19. Rosalsky, A., Thành, L.V.: On the strong law of large numbers for sequences of blockwise independent and blockwise \(p\)-orthogonal random elements in Rademacher type \(p\) Banach spaces. Probab. Math. Stat. 27, 205–222 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Rosalsky, A., Thành, L.V.: Weak laws of large numbers for double sums of independent random elements in Rademacher type \(p\) and stable type \(p\) Banach spaces. Nonlinear Anal. Theory Methods Appl. 71(12), e1065–e1074 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosalsky, A., Thành, L.V.: A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers. Stat. Probab. Lett. 178, 109181 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rosenthal, H.: On the subspaces of \(L^p\) (\(p>2\)) spanned by sequences of independent random variables. Israel J. Math. 8(3), 273–303 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sung, S.H.: Complete convergence for weighted sums of \(\rho ^*\)-mixing random variables. Discrete Dyn. Nat. Soc. Article ID 630608 (2010)

  24. Talagrand, M.: Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17(4), 1546–1570 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thành, L.V.: Mean convergence theorem for multidimensional arrays of random elements in Banach spaces. J. Appl. Math. Stoch. Anal. 2006, 1–6 (2006)

    Article  MathSciNet  Google Scholar 

  26. Thành, L.V.: On the Baum-Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants. C.R. Math. Acad. Sci. Paris 358(11–12), 1231–1238 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Thành, L.V., Thuy, N.T.: Necessary and sufficient conditions for complete convergence of double weighted sums of pairwise independent identically distributed random elements in Banach spaces. Acta Math. Hungar. 157(2), 312–326 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woyczynski, W.A.: Geometry and martingales in Banach spaces-Part II: Independent increments. In: . Kuelbs, J. (Ed.) Probability on Banach Spaces, Advances in Probability and Related Topics (P. Ney, ed.) 4, 267–517 (1978)

  29. Wu, Y., Wang, X., Hu, S.: Complete moment convergence for weighted sums of weakly dependent random variables and its application in nonparametric regression model. Stat. Probab. Lett. 127, 56–66 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous Reviewers for carefully reading the manuscript and for offering useful comments and suggestions which enabled them to improve the paper. In particular, one of the Reviewers so kindly suggested that in Theorem 2.3, it may be possible to replace (2.8) by (2.27) which led to Remark 2.11.

Funding

The research of Lê Vǎn Thành was partially supported by the Ministry of Education and Training, grant no. B2022-TDV-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lê Vǎn Thành.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this section, we present some known results which are used in the previous sections. The first lemma is Theorem 1 in [24].

Lemma A.1

Let \(\{X_i,1\le i\le n\}\) be a collection of n independent mean 0 random elements in a real separable Banach space \({\mathcal {X}}\). Then for all \(q\ge 1\), there exists a constant \(C_{q}\) depending only on q such that

$$\begin{aligned} \mathbb {E}\left( \left\| \sum _{i=1}^{n}X_i\right\| ^q\right) \le C_{q}\left( \left( \mathbb {E}\left\| \sum _{i=1}^n X_i\right\| \right) ^{q}+ \mathbb {E}\left( \max _{1\le i\le n}\Vert X_i\Vert ^{q}\right) \right) . \end{aligned}$$

The following simple result can be obtained by standard estimate (see Theorem 2.12.3 in [9] or Lemma 4 in Thành [26] for a more general version of condition (ii)).

Lemma A.2

Let \(\alpha>0,\ q>p>0\) and let X be a real-valued random variable. Then the following three statements are equivalent.

  1. (i)

    \(\mathbb {E}(|X|^p)<\infty \).

  2. (ii)

    \(\sum _{n=1}^{\infty }n^{\alpha p-1}\mathbb {P}\left( |X|>n^{\alpha }\right) <\infty \).

  3. (iii)

    \(\sum _{n=1}^{\infty }n^{\alpha (p-q)-1}\mathbb {E}\left( |X|^{q}\textbf{1}(|X|\le n^{\alpha })\right) <\infty \).

The next lemma is Lemma 2.3 in [20]. This lemma may be compared with Lemma 2.4 of [25] or Theorem V.9.1 of [28].

Lemma A.3

Let \(1\le p<2\) and let \({\mathcal {X}}\) be a real separable Banach space. Suppose for every sequence \(\{X_n,n\ge 1\}\) of independent and symmetric \({\mathcal {X}}\)-valued random elements which is stochastically dominated by a real-valued random variable X with \(\mathbb {E}(|X|^p)<\infty \) that

$$\begin{aligned} \lim _{n\rightarrow \infty }\dfrac{\sum _{i=1}^{n}X_i}{n^{1/p}}=0 \text { in probability}. \end{aligned}$$

Then \({\mathcal {X}}\) is of stable type p.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosalsky, A., Thành, L.V. Optimal moment conditions for complete convergence for maximal normed weighted sums from arrays of rowwise independent random elements in Banach spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 108 (2023). https://doi.org/10.1007/s13398-023-01440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01440-8

Keywords

Mathematics Subject Classification

Navigation