Skip to main content
Log in

Highly tempering infinite matrices II: From divergence to convergence via Toeplitz–Silverman matrices

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

It was recently proved by Bernal-González et al. (Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112(2):341–345, 2018) that for any Toeplitz–Silverman matrix A, there exists a dense linear subspace of the space of all sequences, all of whose nonzero elements are divergent yet whose images under A are convergent. In this paper, we improve and generalize this result by showing that, under suitable assumptions on the matrix, there are a dense set, a large algebra and a large Banach lattice consisting (except for zero) of such sequences. We show further that one of our hypotheses on the matrix A cannot in general be omitted. The case in which the field of the entries of the matrix is ultrametric is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernal-González, L., Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Highly tempering infinite matrices. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112, 341–345 (2018). https://doi.org/10.1007/s13398-017-0385-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Peyerimhoff, A.: Lectures on Summability. Lecture Notes in Mathematics, vol. 107. Springer, Berlin (1969)

    MATH  Google Scholar 

  3. Wilansky, A.: Summability Through Functional Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  4. Başar, F.: Summability Theory and Its Applications. Bentham Science Publishers, Ltd., Oak Park (2012)

    MATH  Google Scholar 

  5. Aron, R.M., Bernal González, L., Pellegrino, Daniel M., Seoane Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  6. Aron, R.M., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Lineability and spaceability of sets of functions on \(\mathbb{R}\). Proc. Am. Math. Soc. 133, 795–803 (2005). https://doi.org/10.1090/S0002-9939-04-07533-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernal-González, L., Cabana-Méndez, H.J., Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B.: On the dimension of subspaces of continuous functions attaining their maximum finitely many times. Trans. Am. Math. Soc. 373, 3063–3083 (2020). https://doi.org/10.1090/tran/8054

    Article  MathSciNet  MATH  Google Scholar 

  8. Bastin, F., Conejero, J.A., Esser, C., Seoane-Sepúlveda, J.B.: Algebrability and nowhere Gevrey differentiability. Israel J. Math. 205, 127–143 (2015). https://doi.org/10.1007/s11856-014-1104-110.1007/s11856-014-1104-110.1007/s11856-014-1104-110.1007/s11856-014-1104-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51, 71–130 (2014). https://doi.org/10.1090/S0273-0979-2013-01421-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Calderón-Moreno, M.C., Gerlach-Mena, P.J., Prado-Bassas, J.A.: Lineability and modes of convergence. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114, 12–18 (2020). https://doi.org/10.1007/s13398-019-00743-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciesielski, K.C., Seoane-Sepúlveda, J.B.: A century of Sierpiński-Zygmund functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3863–3901 (2019). https://doi.org/10.1007/s13398-019-00726-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciesielski, K.C.: Differentiability versus continuity: restriction and extension theorems and monstrous examples. Bull. Am. Math. Soc. (N.S.) 56, 211–260 (2019). https://doi.org/10.1090/bull/163510.1090/bull/1635

    Article  MathSciNet  MATH  Google Scholar 

  13. Conejero, J.A., Fenoy, M., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Lineability within probability theory settings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111, 673–684 (2017). https://doi.org/10.1007/s13398-016-0318-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Enflo, P.H., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366(no2), 611–625 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Seoane, J.B.: Chaos and Lineability of Pathological Phenomena in Analysis, p. 139. ProQuest LLC, Ann Arbor (2006)

    Google Scholar 

  16. Oikhberg, T.: A note on latticeability and algebrability. J. Math. Anal. Appl. 434, 523–537 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Fernández-Sánchez, J.,Seoane-Sepúlveda, J.B.,Trutschnig, W.:Lineability, algebrability, and sequences of random variables,Preprint, (2020)

  18. Bernal-González, L.,Fernández-Sánchez, J.,Martínez–Gómez, M.E.,Seoane-Sepúlveda, J.B.:Banach spaces and Banach lattices of singular functions,Preprint, (2020)

  19. Elstrodt, J.: Maß- und Integrationstheorie, p. 434. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  21. Rudin, W.: Homogeneity problems in the theory of Čech compactifications. Duke Math. J. 23, 409–419 (1956)

    MathSciNet  MATH  Google Scholar 

  22. Natarajan, P.N.: An Introduction to Ultrametric Summability Theory. SpringerBriefs in Mathematics, p. 102. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1647-6

    Book  MATH  Google Scholar 

  23. Janusz, G.J.: Algebraic Number Fields, 2nd edn. American Mathematical Society, USA (1996)

    MATH  Google Scholar 

  24. García-Pacheco, F.J., Martín, M., Seoane-Sepúlveda, J.B.: Lineability, spaceability, and algebrability of certain subsets offunction spaces. Taiwan. J. Math. 13(4), 1257–1269 (2009). https://doi.org/10.11650/twjm/1500405506

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Seoane-Sepúlveda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Bernal-González was supported by the Plan Andaluz de Investigación de la Junta de Andalucía FQM-127 Grant P08-FQM-03543 and by MICINN Grant PGC2018-098474-B-C21. J. B. Seoane-Sepúlveda was supported by Grant PGC2018-097286-B-I00. W. Trutschnig gratefully acknowledges the support of the WISS 2025 project ‘IDA-lab Salzburg’ (20204-WISS/225/197-2019 and 20102-F1901166-KZP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal-González, L., Fernández-Sánchez, J., Seoane-Sepúlveda, J.B. et al. Highly tempering infinite matrices II: From divergence to convergence via Toeplitz–Silverman matrices. RACSAM 114, 202 (2020). https://doi.org/10.1007/s13398-020-00934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00934-z

Keywords

Mathematics Subject Classification

Navigation