Skip to main content
Log in

A positive answer to Bhatia—Li conjecture on the monotonicity for a new mean in its parameter

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The Bhatia—Li mean \(\mathcal {B}_{p}\left( x,y\right) \) of positive numbers x and y is defined as

$$\begin{aligned} \frac{1}{\mathcal {B}_{p}\left( x,y\right) }=\frac{p}{B\left( 1/p,1/p\right) } \int _{0}^{\infty }\frac{dt}{\left( t^{p}+x^{p}\right) ^{1/p}\left( t^{p}+y^{p}\right) ^{1/p}}\text {, }\ p\in \left( 0,\infty \right) , \end{aligned}$$

where \(B\left( \cdot ,\cdot \right) \) is the Beta function. This new family of means includes the famous logarithmic mean, the Gaussian arithmetic-geometric mean etc. In 2012, Bhatia and Li conjectured that \(\mathcal {B}_{p}\left( x,y\right) \) is an increasing function of the parameter p on \(\left[ 0,\infty \right] \). In this paper, we give a positive answer to this conjecture. Moreover, the mean \(\mathcal {B} _{p}\left( x,y\right) \) is generalized to an multivariate mean and its elementary properties are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson, B.C.: A hypergeometric mean value. Proc. Am. Math. Soc. 16(4), 759–766 (1965)

    MathSciNet  MATH  Google Scholar 

  2. Carlson, B.C.: Lauricella’s hypergeometric function \(F_{D}\). J. Math. Anal. Appl. 7, 452–470 (1963)

    MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Carlson, B.C.: Special Functions of Applied Mathematics. Academic Press, New York (1977)

    MATH  Google Scholar 

  5. Carlson, B.C.: Some inequalities for hypergeometric functions. Proc. Am. Math. Soc. 17(1), 32–39 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Yang, Z.-H.: On the log-convexity of two-parameter homogeneous functions. Math. Inequal. Appl. 10(3), 499–516 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Yang, Z.-H.: On the monotonicity and log-convexity of a four-parameter homogeneous mean. J. Inequal. Appl. 149286, 12 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, Hoboken (1987)

    MATH  Google Scholar 

  10. Bhatia, R., Li, R.: An interpolating family of means. Commun. Stoch. Anal. 6(1), 15–31 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing. Dover Publications, New York and Washington (1972)

    Google Scholar 

  12. Batir, N.: Inequalities for the gamma function. Arch. Math. 91(6), 54–63 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp bounds for psi function. Appl. Math. Comput. 268, 1055–1063 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Yang, Z.-H., Chu, Y.-M., Tao, X.-J.: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 702718, 9 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, 210 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Yang, Z.-H., Tian, J.: Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 12(1), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462, 1714–1726 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Yang, Z.-H.: Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means. J. Math. Anal. Appl. 467, 446–461 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Yang, Z., Tian, J.-F.: Monotonicity rules for the ratio of two Laplace transforms with applications. J. Math. Anal. Appl. 470, 821–845 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Yang, Z.-H., Tian, J.: Convesity and monotonicity for elliptic integrals of the first kind and applications. Appl. Anal. Discrete Math. 13, 240–260 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Feng Tian.

Additional information

Dedicated to the 60th anniversary of Zhejiang Electric Power Company Research Institute

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZH., Tian, JF. & Wang, MK. A positive answer to Bhatia—Li conjecture on the monotonicity for a new mean in its parameter. RACSAM 114, 126 (2020). https://doi.org/10.1007/s13398-020-00856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00856-w

Keywords

Mathematics Subject Classification

Navigation