Skip to main content
Log in

Parallel proximal method of solving split system of fixed point set constraint minimization problems

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce iterative algorithm solving split system of fixed point set constraint minimization problem given as a task of finding a fixed point \(\bar{x}\) of a strictly pseudocontractive mapping and is also a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image \(A(\bar{x})\) under a bounded linear operator A is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. Our algorithm is designed by introducing a setting that will allow us avoid the necessity of prior knowledge of the operator norm to determine the step sizes. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas, M., AlShahrani, M., Ansari, Q., Iyiola, O.S., Shehu, Y.: Iterative methods for solving proximal split minimization problems. Numer. Algorithms 78(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Acedo, G.L., Xu, H.K.: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67(7), 2258–2271 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Alves, M.M., Svaiter, B.F.: A proximal-newton method for unconstrained convex optimization in Hilbert spaces. Optimization 67(1), 67–82 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L., et al.: Convex analysis and monotone operator theory in Hilbert spaces, vol. 408. Springer, Berlin (2011)

    MATH  Google Scholar 

  5. Brezis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, vol. 5. Elsevier, New York (1973)

    MATH  Google Scholar 

  6. Buong, N.: Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms 76(3), 783–798 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. arXiv preprint arXiv:1108.5953 (2011)

  9. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: The split feasibility model leading to a unified approach for inversion problems in intensity-modulated radiation therapy. Technical Report 20 April: Department of Mathematics, University of Haifa, Israel (2005)

  10. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51(10), 2353 (2006)

    Google Scholar 

  11. Censor, Y., Elfving, T.: A multiprojection algorithm using bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21(6), 2071 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59(2), 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327(2), 1244–1256 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16(2), 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Chidume, C.E., Abbas, M., Ali, B.: Convergence of the mann iteration algorithm for a class of pseudocontractive mappings. Appl. Math. Comput. 194(1), 1–6 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Cholamjiak, P., Suantai, S.: Strong convergence for a countable family of strict pseudocontractions in q-uniformly smooth Banach spaces. Comput. Math. Appl. 62(2), 787–796 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Combettes, P.L., Hirstoaga, S.A., et al.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Gill, P.E., Murray, W.: Newton-type methods for unconstrained and linearly constrained optimization. Math. Program. 7(1), 311–350 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, vol. 28. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  21. He, Z.: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012(1), 162 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Hendrickx, J.M., Olshevsky, A.: Matrix p-Norms are NP-Hard to Approximate if p=1,2,\(\infty \). SIAM J. Matrix Anal. Appl. 31(5), 2802–2812 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hieua, D.V.: Parallel extragradient-proximal methods for split equilibrium problems. Math. Model. Anal. 21(4), 478–501 (2016)

    MathSciNet  Google Scholar 

  24. Lemaire, B.: Which fixed point does the iteration method select? In: Recent Advances in Optimization, pp. 154–167. Springer (1997)

  25. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28(8), 085004 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Marino, G., Xu, H.K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329(1), 336–346 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Martinet, B.: Brève communication. régularisation d’inéquations variationnelles par approximations successives. RAIRO 4(R3), 154–158 (1970)

    MATH  Google Scholar 

  28. Martinet, B.: Détermination approchée d’un point fixe d’une application pseudo-contractante. CR Acad. Sci. Paris 274(2), 163–165 (1972)

    MATH  Google Scholar 

  29. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8(3), 367 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150(2), 275–283 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Moudafi, A., Thakur, B.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8(7), 2099–2110 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21(5), 1655 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149(1), 75–88 (1970)

    MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  36. Shehu, Y., Cai, G., Iyiola, O.S.: Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015(1), 123 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Shehu, Y., Iyiola, O.S.: Strong convergence result for proximal split feasibility problem in Hilbert spaces. Optimization 66(12), 2275–2290 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Shehu, Y., Iyiola, O.S.: Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems. Optimization 67(4), 475–492 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Shehu, Y., Iyiola, O.S.: Nonlinear iteration method for proximal split feasibility problems. Math. Methods Appl. Sci. 41, 781–802 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Shehu, Y., Ogbuisi, F.U.: Convergence analysis for proximal split feasibility problems and fixed point problems. J. Appl. Math. Comput. 48(1–2), 221–239 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1), 27–41 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Xu, H.K.: A variable krasnosel’skii-mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6), 2021 (2006)

    MATH  Google Scholar 

  43. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26(10), 105018 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20(4), 1261 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Zhou, H.: Convergence theorems of fixed points for \(\kappa \)-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69(2), 456–462 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by Naresuan university. The authors would like to thank the reviewers for their thoughtful comments and efforts towards improving our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabian Wangkeeree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebrie, A.G., Wangkeeree, R. Parallel proximal method of solving split system of fixed point set constraint minimization problems. RACSAM 114, 13 (2020). https://doi.org/10.1007/s13398-019-00758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-019-00758-6

Keywords

Mathematics Subject Classification

Navigation