Skip to main content
Log in

Tethering towards number: synthesizing cognitive variability and stage-oriented development in children’s arithmetic thinking

  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

Differing research worldviews have typically resulted in interpretations at odds with one another. Yet, leveraging distinct perspectives can lead to novel interpretations and theoretical construction. Via an empirically grounded research commentary, we describe the value of such activity through the lens of previously reported findings. This synthesis of research from dissimilar scholarly traditions is one example of how paradigms in related but sometimes disconnected fields were used to provide a more comprehensive model of foundational numeracy development. While critique and skepticism may be valuable scholarly tools, we argue that such practices should be balanced with openness and belief towards ideas from worldviews different than our own. This balance can provide new and creative interpretations and extend our collective research power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arzarello, F., Bosch, M., Lenfant, A., & Prediger, S. (2007). Different theoretical perspectives in research from teaching problems to research problems. In D. Pitta-Pantazi, G. Phillipou, et al. (Eds.), Proceedings of the 5th Congress of the European Society for Research in Mathematics Education (CERME 5) (pp. 1618–1627). Cyprus: ERME.

    Google Scholar 

  • Brownell, W. A. (1947). The place of meaning in the teaching of arithmetic. Elementary School Journal, 47(5), 256–265.

    Article  Google Scholar 

  • Carpenter, T. P. (1985). Toward a theory of construction. Journal for Research in Mathematics Education, 16(1), 70–76.

    Article  Google Scholar 

  • Chen, Z., & Siegler, R. S. (2000). Overlapping waves theory. Monographs of the Society for Research in Child Development, 65(2), 7–11.

    Article  Google Scholar 

  • Clements, D. H. (1989). Review: consensus, more or less. Journal for Research in Mathematics Education, 20(1), 111–119.

    Article  Google Scholar 

  • Clements, D. H. (1999). Subitizing: what is it? Why teach it? Teaching Children Mathematics, 5(7), 400–405.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: the learning trajectories approach. New York: Routledge.

    Book  Google Scholar 

  • Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind. Journal for Research in Mathematics Education, 23(1), 2–33.

    Article  Google Scholar 

  • Erickson, F. (2006). Definition and analysis of data from videotape: some research procedures and their rationales. In J. L. Green, G. Camilli, P. B. Elmore, A. Skukauskaite, & E. Grace (Eds.), Handbook of complementary methods in education research (pp. 177–192). Hillsdale: Erlbaum.

    Google Scholar 

  • Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology, 42(1), 1–16.

    Google Scholar 

  • Fosnot, C., & Dolk, M. (2001). Young mathematicians at work: constructing number sense, addition and subtraction. Portsmouth: Heinemann.

    Google Scholar 

  • Fuson, K. C. (1982). An analysis of the counting—on solution procedure in addition. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: a cognitive perspective (pp. 67–81). Hillsdale: Erlbaum.

    Google Scholar 

  • Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer-Verlag.

    Book  Google Scholar 

  • Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. In C. J. Brainerd (Ed.), Children’s logical and mathematical cognition (pp. 33–92). New York: Springer.

    Chapter  Google Scholar 

  • Fuson, K. C., Secada, W. G., & Hall, J. W. (1983). Matching, counting, and conservation of numerical equivalence. Child Development, 54(1), 91–97.

    Article  Google Scholar 

  • Fuson, K. C., Pergament, G. G., & Lyons, B. G. (1985). Collection terms and preschoolers’ use of the cardinality rule. Cognitive Psychology, 17(6), 1429–1436.

    Google Scholar 

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1/2), 43–74.

    Article  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge: Harvard University Press.

    Google Scholar 

  • Gelman, R., & Meck, E. (1983). Preschoolers counting: principles before skill. Cognition, 13(3), 343–359.

    Article  Google Scholar 

  • Gelman, R., & Tucker, M. F. (1975). Further investigations of the young child’s conception of number. Child Development, 46(1), 167–175.

    Article  Google Scholar 

  • Glaser, B., & Strauss, A. (1967). The discovery of the grounded theory: strategies for qualitative research. New York: Aldine de Gruyter.

    Google Scholar 

  • Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.

    Article  Google Scholar 

  • Ilg, F., & Ames, L. B. (1951). Developmental trends in arithmetic. Journal of Genetic Pschology, 79(1), 3–28.

    Google Scholar 

  • Karp, A., & Schubring, G. (Eds.). (2014). Handbook on the history of mathematics education. New York: Springer.

    Google Scholar 

  • Kosslyn, S. M. (1980). Image and mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Kosslyn, S. M. (2005). Mental images and the brain. Cognitive Neuropsychology, 22(3/4), 333–347.

    Article  Google Scholar 

  • Moschkovich, J. N., & Brenner, M. E. (2000). Integrating a naturalistic paradigm into research on mathematics and science cognition and learning. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 457–486). Hillsdale: Erlbaum.

    Google Scholar 

  • Olive, J. (2001). Children's number sequences: an explanation of Steffe's constructs and an extrapolation to rational numbers of arithmetic. The Mathematics Educator, 11(1), 4–9.

    Google Scholar 

  • Piaget, J. (1952). The child 's concept of number. London: Routledge.

    Google Scholar 

  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: first steps towards a conceptual framework. ZDM, 40(2), 165–178.

    Article  Google Scholar 

  • Putnam, H. (1988). Representation and reality. Cambridge: Bradford.

    Google Scholar 

  • Pylyshyn, Z. W. (1974). What the mind’s eye tells the mind’s brain: a critique of mental imagery. In J. M. Nichols (Ed.), Images, perceptions, and knowledge (pp. 1–36). New York: Springer.

    Google Scholar 

  • Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences, 25(2), 157–238.

    Article  Google Scholar 

  • Rathgeb-Schnierer, E., & Green, M. (2013). Flexibility in mental calculation in elementary students from different math classes. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the eighth congress of the European Society for Research in Mathematics Education (pp. 353–362). Ankara: Middle East Technical University.

    Google Scholar 

  • Rorty, R. (1979). Philosophy and the mirror of our nature. Princeton: Princeton University Press.

    Google Scholar 

  • Seigler, R. S. (2000). The rebirth of children's learning. Child Development, 71(1), 26–35.

    Article  Google Scholar 

  • Siegler, R. S. (1987). Strategy choices in subtraction. In J. A. Sloboda & D. Rogers (Eds.), Cognitive processes in mathematics (pp. 81–106). Oxford: Clarendon Press.

    Google Scholar 

  • Siegler, R. S. (1994). Cognitive variability: a key to understanding cognitive development. Current Directions in Psychological Science, 3(1), 1–5.

    Article  Google Scholar 

  • Siegler, R.S. & Crowley, K. (1994). Constraints on nonprivileged domains. Cognitive Psychology, 27(2), 194-226.

  • Siegler, R. S. (2006). Microgenetic analyses of learning. In D. Kuhn, R. S. Siegler, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (6th ed., pp. 464–510). Hoboken: Wiley.

    Google Scholar 

  • Siegler, R. S., & Robinson, M. (1982). The development of numerical understandings. In H. W. Reese & L. P. Lipsett (Eds.), Advances in child development and behavior (Vol. 16, pp. 242–312). New York: Academic Press.

    Google Scholar 

  • Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do children know what to do? In C. Sophian (Ed.), The origins of cognitive skills (pp. 229–293). Hillsdale: Erlbaum.

    Google Scholar 

  • Smith, T. M., Cobb, P., Farran, D. C., Cordray, D. S., & Munter, C. (2013). Evaluating Math Recovery: assessing the causal impact of a diagnostic tutoring program on student achievement. American Education Research Journal, 50(2), 397–428.

    Article  Google Scholar 

  • Sophian, C. (2007). The origins of mathematical knowledge in childhood. New York: Lawrence Erlbaum.

    Google Scholar 

  • Steffe, L. (1992). Learning stages in the construction of the number sequence. In J. Bideaud, C. Meljac, & J. Fischer (Eds.), Pathways to number: children’s developing numerical abilities (pp. 83–88). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Steffe, L. P. (2013). Establishing mathematics education as an academic field: a constructive odyssey. Journal for Research in Mathematics Education, 44(2), 354–370.

    Google Scholar 

  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267–307). Mahwah: Erlbaum.

    Google Scholar 

  • Steffe, L. P., von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children’s counting types: philosophy, theory, and application. New York: Praeger Scientific.

  • Steffe, L. P., Cobb, P., & von Glasersfeld, E. (1988). Construction of arithmetical meanings and strategies. New York: Springer-Verlag.

    Book  Google Scholar 

  • Svenson, O., & Sjöberg, K. (1983). Evolution of cognitive processes for solving simple additions during the first three school years. Scandinavian Journal of Psychology, 24(1), 117–124.

    Article  Google Scholar 

  • Thomas, J. & Tabor, P.D. (2012). Developing Quantitative Mental Imagery. Teaching Children Mathematics, 19(3), 174-183.

  • Thomas, J. & Harkness, S. S. (2013). Implications for intervention: Categorizing the quantitative mental imagery of children. Mathematics Education Research Journal, 25(2), 231-256.

  • Thomas, J. & Harkness, S.S. (2016). Patterns of Non-verbal Social Interaction within Intensive Mathematics Intervention Contexts. Mathematics Education Research Journal, 28(2), 277-302.

  • Thomas, J., Tabor, P. D., & Wright, R. J. (2010). Three aspects of first-graders' number knowledge: Observations and instructional implications. Teaching Children Mathematics, 17 (5), 299-308.

  • Thompson, P. W. (1979). The Soviet-style teaching experiment in mathematics education. Paper presented at the Annual Research Meeting of the National Council of Teachers of Mathematics, Boston, MA.

  • Thompson, P. W. (1982). Were lions to speak, we wouldn't understand. Journal of Mathematical Behavior, 3(2), 147–165.

    Google Scholar 

  • Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50(1), 29–47.

    Article  Google Scholar 

  • Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics: teaching developmentally (9th ed.). New York: Pearson.

    Google Scholar 

  • Wirszup, I., & Kilpatrick, J. (Eds.). (1975). Soviet studies in the psychology of mathematics education (Vol. 1-14). Palo Alto and Reston: School Mathematics Study Group and National Council of Teachers of Mathematics.

  • Wright, R. J. (1994). A study of the numerical development of 5-year-olds and 6-year-olds. Educational Studies in Mathematics, 26(1), 25–44.

    Article  Google Scholar 

  • Wright, R.J., Ellemor-Collins, D. (2016). The Learning Framework in Number: Pedagogical Tools for Assessment and Instruction. London: Paul Chapman Publications/Sage.

  • Wright, R. J., Martland, J., Stafford, A., & Stanger, G. (2002). Teaching number: advancing children’s skills and strategies. London: Paul Chapman Publications/Sage.

    Google Scholar 

  • Wright, R. J., Martland, J., & Stafford, A. (2006). Early numeracy: assessment for teaching and intervention (2nd ed.). London: Paul Chapman publications/Sage.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Norris Thomas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J.N., Harkness, S.S. Tethering towards number: synthesizing cognitive variability and stage-oriented development in children’s arithmetic thinking. Math Ed Res J 31, 325–347 (2019). https://doi.org/10.1007/s13394-018-00256-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-018-00256-9

Keywords

Navigation