Skip to main content
Log in

Effects of Sputtering Power, Working Pressure, and Electric Bias on the Deposition Behavior of Ag Films during DC Magnetron Sputtering Considering the Generation of Charged Flux

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Effects of sputtering power, working pressure, and bias on the growth rate, crystallinity, and resistivity of Ag thin films deposited by direct current (DC) magnetron sputtering were investigated. Thin films were deposited on the substrate under the electric biases of − 300, 0, and + 300 V for 30 min with sputtering powers of 20, 50, 100, and 200 W and working pressures of 2.5, 5, 10, and 20 mTorr. Under all sputtering powers, the growth rate of the thin film was increased by the positive bias, whereas it was decreased by the negative bias. For example, the film thicknesses were 345.7, 377.9, and 416.0 nm at − 300, 0, and + 300 V, respectively, at a sputtering power of 100 W and a working pressure of 2.5 mTorr. The bias effect was enhanced as the working pressure decreased. Considering the change of the film growth rate according to the bias, the amount of negatively charged flux was estimated to be roughly 10%. As the working pressure decreased, the crystallinity of the deposited films increased by the positive bias whereas it decreased by the negative bias, which is indicated by the full width at half maximum (FWHM) determined by X-ray diffraction of the Ag (111) peak. The film resistivity had the same tendency. This change in the deposition behavior of the Ag film can be understood as the effect of the charged flux.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Markov, I.V.: Crystal Growth for Beginners. World Scientific (2003)

    Book  Google Scholar 

  2. Cölfen, H.: Mesocrystals and Nonclassical Crystallization. Wiley, England (2008)

    Book  Google Scholar 

  3. De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Cölfen, H., Dove, P.M.: Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349(6247), aaa6760 (2015)

    Article  CAS  Google Scholar 

  4. Gebauer, D., Völkel, A., Cölfen, H.: Stable prenucleation calcium carbonate clusters. Science 322(5909), 1819 (2008)

    Article  CAS  Google Scholar 

  5. Jehannin, M., Rao, A., Cölfen, H.: New horizons of nonclassical crystallization. J. Am. Chem. Soc. 141(26), 10120–10136 (2019)

    Article  CAS  Google Scholar 

  6. Niederberger, M., Cölfen, H.: Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8(28), 3271–3287 (2006)

    Article  CAS  Google Scholar 

  7. Song, R., Krasia-Christoforou, T., Debus, C., Cölfen, H.: Structure and magnetic property control of copper hydroxide acetate by non-classical crystallization. Small 13(9), 1602702 (2017)

    Article  CAS  Google Scholar 

  8. Abd El-Fattah, H.A., El-Mahallawi, I., Shazly, M.H., Khalifa, W.A.: Microstructure evolution of NiTi magnetron sputtered thin film on different substrates. Key Eng. Mater. 835, 68–74 (2020)

    Article  Google Scholar 

  9. Feng, X., Gao, R., Wang, R., Zhang, G.: Non-classical crystal growth on a hydrophobic substrate: learning from bivalve nacre. CrystEngComm 22(18), 3100–3105 (2020)

    Article  CAS  Google Scholar 

  10. Lizandara-Pueyo, C., Dilger, S., Wagner, M.R., Gerigk, M., Hoffmann, A., Polarz, S.: Li-doped ZnO nanorods with single-crystal quality—non-classical crystallization and self-assembly into mesoporous materials. CrystEngComm 16(8), 1525–1531 (2014)

    Article  CAS  Google Scholar 

  11. Sadri, B., Pernitsky, D., Sadrzadeh, M.: Aggregation and deposition of colloidal particles: effect of surface properties of collector beads. Colloids Surfaces A: Physicochemical and Engineering Aspects 530, 46–52 (2017)

    Article  CAS  Google Scholar 

  12. Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., Osiko, V.V.: Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev. 83(12), 1204–1222 (2014)

    Article  CAS  Google Scholar 

  13. Grüner, D., Shen, Z.: Ordered coalescence of nano-crystals during rapid solidification of ceramic melts. CrystEngComm 13(17), 5303–5305 (2011)

    Article  CAS  Google Scholar 

  14. Hu, M., Jiang, J.-S., Ji, R.-P., Zeng, Y.: Prussian Blue mesocrystals prepared by a facile hydrothermal method. CrystEngComm 11(11), 2257–2259 (2009)

    Article  CAS  Google Scholar 

  15. Jin, B., Liu, Z., Tang, R.: Recent experimental explorations of non-classical nucleation. CrystEngComm 22(24), 4057–4073 (2020)

    Article  CAS  Google Scholar 

  16. Banner, D.J., Firlar, E., Rehak, P., Phakatkar, A.H., Foroozan, T., Osborn, J.K., Sorokina, L.V., Narayanan, S., Tahseen, T., Baggia, Y., Král, P., Shokuhfar, T., Shahbazian-Yassar, R.: In situ liquid-cell tem observation of multiphase classical and nonclassical nucleation of calcium oxalate. Adv. Func. Mater. 31(18), 2007736 (2021)

    Article  CAS  Google Scholar 

  17. Cookman, J., Hamilton, V., Hall, S.R., Bangert, U.: Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy. Sci. Rep. 10(1), 19156 (2020)

    Article  CAS  Google Scholar 

  18. Liao, H.-G., Cui, L., Whitelam, S., Zheng, H.: Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084), 1011–1014 (2012)

    Article  CAS  Google Scholar 

  19. Hwang, N.M.: Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer, Netherlands (2016)

    Book  Google Scholar 

  20. Youn, W.K., Lee, S.S., Lee, J.Y., Kim, C.S., Hwang, N.M., Iijima, S.: Comparison of the deposition behavior of charged silicon nanoparticles between floating and grounded substrates. J. Phys. Chem. C 118(22), 11946–11953 (2014)

    Article  CAS  Google Scholar 

  21. Park, S.-W., Jung, J.-S., Kim, K.-S., Kim, K.-H., Hwang, N.-M.: Effect of bias applied to the substrate on the low temperature growth of silicon epitaxial films during RF-PECVD. Cryst. Growth Des. 18(10), 5816–5823 (2018)

    Article  CAS  Google Scholar 

  22. Lee, Y., Han, H.N., Kim, W., Hwang, N.M.: Effect of bipolar charging of SiH4 on the growth rate and crystallinity of silicon films grown in the atmospheric pressure chemical vapor deposition process. Electron. Mater. Lett. 16(4), 385–395 (2020)

  23. Kim, D., Kim, D., Kwon, J.H., Kim, K.S., Hwang, N.M.: Generation of charged SiC nanoparticles during HWCVD process. Electron. Mater. Lett. 16(5), 498–505 (2020)

  24. Jeon, I.-D., Kim, D.-Y., Hwang, N.-M.: Spontaneous generation of charged atoms or clusters during thermal evaporation of silver. Z. Met. 96(2), 186–190 (2005)

    CAS  Google Scholar 

  25. Jang, G.-S., Kim, D.-Y., Hwang, N.-M.: The effect of charged ag nanoparticles on thin film growth during DC magnetron sputtering. Coatings 10(8), 736 (2020)

    Article  CAS  Google Scholar 

  26. Kwon, J.-H., Kim, D.-Y., Hwang, N.-M.: Generation of charged Ti nanoparticles and their deposition behavior with a substrate bias during RF magnetron sputtering. Coatings 10(5), 443 (2020)

    Article  CAS  Google Scholar 

  27. Kwon, J.H., Kim, D., Kim, K.S., Hwang, N.M.: Preparation of highly (002) oriented Ti films on a floating Si (100) substrate by RF magnetron sputtering. Electron. Mater. Lett. 16(1), 14–21 (2020)

  28. Zhang, C., Ding, W., Wang, H., Chai, W., Ju, D.: Influences of working pressure on properties for TiO2 films deposited by DC pulse magnetron sputtering. J. Environ. Sci. 21(6), 741–744 (2009)

    Article  CAS  Google Scholar 

  29. Seidl, M., Perdew, J.P., Brajczewska, M., Fiolhais, C.: Ionization energy and electron affinity of a metal cluster in the stabilized jellium model: Size effect and charging limit. J. Chem. Phys. 108(19), 8182–8189 (1998)

    Article  CAS  Google Scholar 

  30. Muniz, F.T., Miranda, M.A., Morilla Dos Santos, C., Sasaki, J.M.: The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A: Found. Adv. 72(Pt 3), 385–390 (2016)

    Article  CAS  Google Scholar 

  31. Jang, G.S., Kim, D.Y., Hwang, N.M.: Dependence of the generation behavior of charged nanoparticles and Ag film growth on sputtering power during DC magnetron sputtering. Electron. Mater. Lett. 17(2), 172–180 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIT) (No. NRF-2013M3A6B1078874), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A5A6017701), and Samsung Electronics Co., Ltd. (0417-20200170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong-Moon Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, G.S., Ahn, S.M. & Hwang, NM. Effects of Sputtering Power, Working Pressure, and Electric Bias on the Deposition Behavior of Ag Films during DC Magnetron Sputtering Considering the Generation of Charged Flux. Electron. Mater. Lett. 18, 57–68 (2022). https://doi.org/10.1007/s13391-021-00314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00314-8

Keywords

Navigation