Skip to main content
Log in

Role of Composition in Enhancing Heat Transfer Behavior of Carbon Nanotube-Ethylene Glycol Based Nanofluids

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report the method of tuning the thermal conductivity through the composition of multiwall carbon nanotube (MWCNT) dispersed ethylene glycol based nanofluids. The structure and properties of the MWCNTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. A parallel plate thermal conductivity (PPTC) set up was fabricated and used for measurement of thermal conductivity of the nanofluids. We have prepared ethylene glycol based nanofluids containing 0.05, 0.1, 0.15, 0.20, 0.25 and 0.35 wt% of MWCNTs. The thermal conductivities of these fluids were measured by keeping them between the two (parallel) plates, referred as the hot and the cold plates, of the sample holder in the PPTC apparatus. The lower plate was water-cooled and the upper plate was heated. The temperature of the hot plate was varied between 35 and 80 °C. The thermal conductivity of the fluids was calculated using the one-dimensional heat conduction equation. According to our observation, an efficient heat transfer occurs through the nanofluids with an optimum concentration of 0.20 wt% of CNTs. Our work demonstrates the importance of the composition of the nanofluids and their structural defects in heat transfer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Singh, N., Chand, G., Kanagaraj, S.: Investigation of thermal conductivity and viscosity of carbon nanotubes-ethylene glycol nanofluids. Heat Transf. Eng. 33, 821–827 (2012). https://doi.org/10.1080/01457632.2012.646922

    Article  CAS  Google Scholar 

  2. Wen, D., Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47, 5181–5188 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

    Article  CAS  Google Scholar 

  3. Xing, M., Yu, J., Wang, R.: Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int. J. Heat Mass Transf. 88, 609–616 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005

    Article  CAS  Google Scholar 

  4. Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S.: Enhanced thermal conductivity through the development of nanofluids. MRS Proc. 457, 3 (1996). https://doi.org/10.1557/PROC-457-3

    Article  Google Scholar 

  5. Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003). https://doi.org/10.1115/1.1571080

    Article  CAS  Google Scholar 

  6. Hong, T.K., Yang, H.S., Choi, C.J.: Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 97, 064311 (2005). https://doi.org/10.1063/1.1861145

    Article  CAS  Google Scholar 

  7. Li, C.H., Peterson, G.P.: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 99, 084314 (2006). https://doi.org/10.1063/1.2191571

    Article  CAS  Google Scholar 

  8. Ding, Y., Alias, H., Wen, D., Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 49, 240–250 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009

    Article  CAS  Google Scholar 

  9. Beck, M.P., Yuan, Y., Warrier, P., Teja, A.S.: The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J. Nanopart. Res. 12, 1469–1477 (2010). https://doi.org/10.1007/s11051-009-9716-9

    Article  CAS  Google Scholar 

  10. Murshed, S.M.S., Leong, K.C., Yang, C.: Enhanced thermal conductivity of TiO2–water based nanofluids. Int. J. Therm. Sci. 44, 367–373 (2005). https://doi.org/10.1016/j.ijthermalsci.2004.12.005

    Article  CAS  Google Scholar 

  11. Chopkar, M., Kumar, S., Bhandari, D.R., Das, P.K., Manna, I.: Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 141–148 (2007). https://doi.org/10.1016/j.mseb.2007.01.048

    Article  CAS  Google Scholar 

  12. Assael, M.J., Chen, C.F., Metaxa, I., Wakeham, W.A.: Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 25, 971–985 (2004). https://doi.org/10.1023/B:IJOT.0000038494.22494.04

    Article  CAS  Google Scholar 

  13. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., Wu, Q.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568–4572 (2002). https://doi.org/10.1063/1.1454184

    Article  CAS  Google Scholar 

  14. Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H.P., Sauter, C., Tavman, S.: Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int. J. Thermophys. 30, 1213–1226 (2009). https://doi.org/10.1007/s10765-009-0594-2

    Article  CAS  Google Scholar 

  15. Ding, F., Rosén, A., Campbell, E.E.B., Falk, L.K.L., Bolton, K.: Graphitic encapsulation of catalyst particles in carbon nanotube production. J. Phys. Chem. B 110, 7666–7670 (2006). https://doi.org/10.1021/jp055485y

    Article  CAS  Google Scholar 

  16. Choudhary, H.K., Kumar, R., Pawar, S.P., Anupama, A.V., Bose, S., Sahoo, B.: Effect of coral-shaped yttrium iron garnet particles on the EMI shielding behaviour of yttrium iron garnet–polyaniline–wax composites. ChemistrySelect 3, 2120–2130 (2018). https://doi.org/10.1002/slct.201702698

    Article  CAS  Google Scholar 

  17. Kumar, R., Sahoo, B.: One-step pyrolytic synthesis and growth mechanism of core–shell type Fe/Fe3C-graphite nanoparticles-embedded carbon globules. Nano-Struct. Nano-Obj. 16, 77–85 (2018). https://doi.org/10.1016/j.nanoso.2018.05.005

    Article  CAS  Google Scholar 

  18. Kumar, R., Choudhary, H.K., Pawar, S.P., Bose, S., Sahoo, B.: Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys. Chem. Chem. Phys. 19, 23268–23279 (2017). https://doi.org/10.1039/C7CP03175K

    Article  CAS  Google Scholar 

  19. Choudhary, H.K., Kumar, R., Pawar, S.P., Sundararaj, U., Sahoo, B.: Effect of morphology and role of conductivity of embedded metallic nanoparticles on electromagnetic interference shielding of PVDF-carbonaceous-nanofiller composites. Carbon 164, 357–368 (2020). https://doi.org/10.1016/j.carbon.2020.04.007

    Article  CAS  Google Scholar 

  20. Choudhary, H.K., Kumar, R., Pawar, S.P., Sundararaj, U., Sahoo, B.: Enhancing absorption dominated microwave shielding in Co@C–PVDF nanocomposites through improved magnetization and graphitization of the Co@C-nanoparticles. Phys. Chem. Chem. Phys. 21, 15595–15608 (2019). https://doi.org/10.1039/c9cp03305j

    Article  CAS  Google Scholar 

  21. Kumar, R., Rajendiran, R., Choudhary, H.K., Naveen, K.G.M., Balaiah, B., Anupama, A.V., Sahoo, B.: Role of pyrolysis reaction temperature and heating-rate in the growth and morphology of carbon nanostructures. Nano-Struct. Nano-Obj. 12, 229–238 (2017). https://doi.org/10.1016/j.nanoso.2017.11.002

    Article  CAS  Google Scholar 

  22. Anupama, A.V., Keune, W., Sahoo, B.: Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing. J. Magn. Magn. Mater. 439, 156–166 (2017). https://doi.org/10.1016/j.jmmm.2017.04.094

    Article  CAS  Google Scholar 

  23. Anupama, A.V., Kumaran, V., Sahoo, B.: Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids. J. Ind. Eng. Chem. 67, 347–357 (2018). https://doi.org/10.1016/J.JIEC.2018.07.006

    Article  CAS  Google Scholar 

  24. Anupama, A.V., Khopkar, V.B., Kumaran, V., Sahoo, B.: Magnetic field dependent steady-state shear response of Fe3O4 micro-octahedron based magnetorheological fluids. Phys. Chem. Chem. Phys. 20, 20247–20256 (2018). https://doi.org/10.1039/C8CP02335B

    Article  CAS  Google Scholar 

  25. Hoekstra, J., Beale, A.M., Soulimani, F., Versluijs-Helder, M., Geus, J.W., Jenneskens, L.W.: Base metal catalyzed graphitization of cellulose: a combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study. J. Phys. Chem. C 119, 10653–10661 (2015). https://doi.org/10.1021/acs.jpcc.5b00477

    Article  CAS  Google Scholar 

  26. Kumar, R., Sahoo, B.: Investigation of disorder in carbon encapsulated core–shell Fe/Fe3C nanoparticles synthesized by one-step pyrolysis. Diam. Relat. Mater. 90, 62–71 (2018). https://doi.org/10.1016/j.diamond.2018.10.003

    Article  CAS  Google Scholar 

  27. Khopkar, V., Sahoo, B.: Low temperature dielectric properties and NTCR behavior of the BaFe0.5Nb0.5O3 double perovskite ceramic. Phys. Chem. Chem. Phys. 22, 2986–2998 (2020). https://doi.org/10.1039/c9cp05707b

    Article  CAS  Google Scholar 

  28. Khan, M.A., Singha, M.K., Nanda, K.K., Krupanidhi, S.B.: Defect and strain modulated highly efficient ZnO UV detector: temperature and low-pressure dependent studies. Appl. Surf. Sci. 505, 1–11 (2020). https://doi.org/10.1016/j.apsusc.2019.144365

    Article  CAS  Google Scholar 

  29. Kumar, R., Kumar, A., Verma, N., Khopkar, V., Philip, R., Sahoo, B.: Ni nanoparticles coated with nitrogen-doped carbon for optical limiting applications. ACS Appl. Nano Mater. (2020). https://doi.org/10.1021/acsanm.0c01284

    Article  Google Scholar 

  30. Kumar, R., Kumar, A., Verma, N., Anupama, A.V., Philip, R., Sahoo, B.: Modulating non-linear optical absorption through controlled graphitization of carbon nanostructures containing Fe3C-graphite core–shell nanoparticles. Carbon 153, 545–556 (2019). https://doi.org/10.1016/j.carbon.2019.07.058

    Article  CAS  Google Scholar 

  31. Kumar, R., Kumar, A., Verma, N., Philip, R., Sahoo, B.: FeCoCr alloy-nanoparticle embedded bamboo-type carbon nanotubes for non-linear optical limiting application. J. Alloys Compd. 849, 156665 (2020). https://doi.org/10.1016/j.jallcom.2020.156665

    Article  CAS  Google Scholar 

  32. Kumar, A., Kumar, R., Verma, N., Anupama, A.V., Choudhary, H.K., Philip, R., Sahoo, B.: Effect of the band gap and the defect states present within band gap on the non-linear optical absorption behaviour of yttrium aluminium iron garnets. Opt. Mater. 108, 110163 (2020). https://doi.org/10.1016/j.optmat.2020.110163

    Article  CAS  Google Scholar 

  33. Kostic, M.M., Walleck, C.J.: Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress Expo Vol. 5 Energy Systems Analytics Thermodynamics Sustain. Nanoengineering Energy; Engineering to Address Climate Change Parts A and B, pp. 1457–1464. Vancouver (2010). https://doi.org/10.1115/imece2010-38187

  34. Yu, X., Wu, Q., Zhang, H., Zeng, G., Li, W., Qian, Y., Li, Y., Yang, G., Chen, M.: Investigation on synthesis, stability, and thermal conductivity properties of water-based SnO2/reduced graphene oxide nanofluids. Materials 11, 1–13 (2017). https://doi.org/10.3390/ma11010038

    Article  CAS  Google Scholar 

  35. Wang, S., Li, Y., Zhang, H., Lin, Y., Li, Z., Wang, W., Wu, Q., Qian, Y., Hong, H., Zhi, C.: Enhancement of thermal conductivity in water-based nanofluids employing TiO2/reduced graphene oxide composites. J. Mater. Sci. 51, 10104–10115 (2016). https://doi.org/10.1007/s10853-016-0239-3

    Article  CAS  Google Scholar 

  36. Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., Li, J.Q.: Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 66, 1–6 (2002). https://doi.org/10.1103/physrevb.66.165440

    Article  Google Scholar 

  37. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001). https://doi.org/10.1063/1.1408272

    Article  CAS  Google Scholar 

  38. Xie, H., Lee, H., Youn, W., Choi, M.: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 94, 4967–4971 (2003). https://doi.org/10.1063/1.1613374

    Article  CAS  Google Scholar 

  39. Pan, R., Xu, Z., Zhu, Z., Wang, Z.: Thermal conductivity of functionalized single-wall carbon nanotubes. Nanotechnology (2007). https://doi.org/10.1088/0957-4484/18/28/285704

    Article  Google Scholar 

  40. Heyhat, M.M., Kimiagar, S., Ghanbaryan Sani Gasem Abad, N., Feyzi, E.: Thermal conductivity of reduced graphene oxide by pulse laser in ethylene glycol. Phys. Chem. Res. 4, 407–415 (2016). https://doi.org/10.22036/pcr.2016.14777

    Article  CAS  Google Scholar 

  41. Wen, D., Ding, Y.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J. Thermophys. Heat Transf. 18, 481–485 (2004). https://doi.org/10.2514/1.9934

    Article  CAS  Google Scholar 

  42. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502–1–215502–4 (2001). https://doi.org/10.1103/PhysRevLett.87.215502

    Article  CAS  Google Scholar 

  43. Che, J., Çagin, T., Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology 50, 65–69 (2000). https://doi.org/10.1016/bs.aiht.2018.07.004

    Article  Google Scholar 

  44. Aliev, A.E., Lima, M.H., Silverman, E.M., Baughman, R.H.: Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21, 035709 (2010). https://doi.org/10.1088/0957-4484/21/3/035709

    Article  CAS  Google Scholar 

  45. Jing, L., Samani, M.K., Liu, B., Li, H., Tay, R.Y., Tsang, S.H., Cometto, O., Nylander, A., Liu, J., Teo, E.H.T., Tok, A.I.Y.: Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl. Mater. Interfaces 9, 14555–14560 (2017). https://doi.org/10.1021/acsami.7b02154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AD, AH, Ankit and MSD acknowledge the guidance from Dr. Veeranna B. Nasi (Ramaiah Institute of Technology, Bangalore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sahoo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest!

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindushree, N., Dhabale, A., Dhanush, M.S. et al. Role of Composition in Enhancing Heat Transfer Behavior of Carbon Nanotube-Ethylene Glycol Based Nanofluids. Electron. Mater. Lett. 16, 595–603 (2020). https://doi.org/10.1007/s13391-020-00243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00243-y

Keywords

Navigation