Skip to main content
Log in

Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Announced as one of the top 10 research breakthroughs in 2016, perovskite solar cells (PSC) have advanced rapidly as an established photovoltaic technology. The power conversion efficiency (PCE) of PSCs has increased quickly from 3.8% to 23.7% within a period of just 7 years. This very high PCE has been achieved by using perovskite compounds with lead (Pb) as the divalent metal ion. However, for further scale-up and commercialization, the toxicity of Pb has been identified as one of the key drawbacks for this technology. Numerous avenues for development of lead-free low-toxicity perovskite absorbers have been pursued. The unclear effect of using low-toxicity materials on optimal performance with suitable characteristics has motivated the writing of this review. Results from low-toxicity perovskite solar cells utilizing partial or complete substitution of the Pb2+ cation as the absorber layer are discussed in detail. Moreover, we discuss the limitations of low-toxicity absorber materials. This review summarizes the key points of film quality control, degradation effect, Pb replacement suitability, and photovoltaic performance of reported low toxicity alternate perovskite absorbers for PSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Copyright 2014 John Wiley & Sons

Fig. 2

Copyright 2016, American Chemical Society

Fig. 3

Copyright 2016, American Chemical Society

Fig. 4

Copyright 2016, American Chemical Society

Fig. 5

Copyright 2016 John Wiley & Sons

Fig. 6

Copyright 2016 John Wiley & Sons

Fig. 7

Copyright 2016, American Chemical Society

Fig. 8

Copyright 2017, Elsevier

Fig. 9

Copyright 2017, Royal Society of Chemistry

Fig. 10

Copyright 2017, Royal Society of Chemistry

Fig. 11

Copyright 2014, Royal Society of Chemistry

Fig. 12

Copyright 2016, Nature Publishing Group

Fig. 13

Copyright 2015, Royal Society of Chemistry

Fig. 14

Copyright 2016, American Chemical Society

Fig. 15

Copyright 2016, American Chemical Society

Fig. 16

Copyright 2016, American Chemical Society. (Color figure online)

Fig. 17

Copyright 2015 John Wiley & Sons

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Google Scholar 

  2. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)

    Google Scholar 

  3. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  4. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Google Scholar 

  5. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Google Scholar 

  6. Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)

    Google Scholar 

  7. Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Peng, W., Han, L.: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934–2938 (2014)

    Google Scholar 

  8. Son, D.-Y., Im, J.-H., Kim, H.-S., Park, N.-G.: 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C 118, 16567–16573 (2014)

    Google Scholar 

  9. Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith, H.J.: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014)

    Google Scholar 

  10. Kumar, M.H., Yantara, N., Dharani, S., Graetzel, M., Mhaisalkar, S., Boix, P.P., Mathews, N.: Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11091 (2013)

    Google Scholar 

  11. Gilfillan, S.C.: Lead poisoning and the fall of Rome. J. Occup. Environ. Med. 7, 53–60 (1965)

    Google Scholar 

  12. Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014)

    Google Scholar 

  13. Park, B.W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., Johansson, E.M.: Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015)

    Google Scholar 

  14. Cortecchia, D., Dewi, H.A., Yin, J., Bruno, A., Chen, S., Baikie, T., Boix, P.P., Grätzel, M., Mhaisalkar, S., Soci, C.: Lead-free MA2CuClxBr 4–x hybrid perovskites. Inorg. Chem. 55, 1044–1052 (2016)

    Google Scholar 

  15. Hebig, J.-C., Kühn, I., Flohre, J., Kirchartz, T.: Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1, 309–314 (2016)

    Google Scholar 

  16. Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015(350), 944–948 (2015)

    Google Scholar 

  17. Wu, Y., Yang, X., Chen, W., Yue, Y., Cai, M., Xie, F., Bi, E., Islam, A., Han, L.: Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016)

    Google Scholar 

  18. Mitzi, D., Feild, C., Harrison, W., Guloy, A.: Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994)

    Google Scholar 

  19. Mitzi, D.B., Feild, C., Schlesinger, Z., Laibowitz, R.: Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995)

    Google Scholar 

  20. Kumar, M.H., Dharani, S., Leong, W.L., Boix, P.P., Prabhakar, R.R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M.: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014)

    Google Scholar 

  21. Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014)

    Google Scholar 

  22. Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P., Kanatzidis, M.G.: Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445–11452 (2015)

    Google Scholar 

  23. Liao, W., Zhao, D., Yu, Y., Shrestha, N., Ghimire, K., Grice, C.R., Wang, C., Xiao, Y., Cimaroli, A.J., Ellingson, R.J.: Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016)

    Google Scholar 

  24. Wang, Z.K., Li, M., Yang, Y.G., Hu, Y., Ma, H., Gao, X.Y., Liao, L.S.: High efficiency Pb–In binary metal perovskite solar cells. Adv. Mater. 28, 6695–6703 (2016)

    Google Scholar 

  25. Liao, W., Zhao, D., Yu, Y., Grice, C.R., Wang, C., Cimaroli, A.J., Schulz, P., Meng, W., Zhu, K., Xiong, R.G.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016)

    Google Scholar 

  26. Tsai, C.-M., Wu, H.-P., Chang, S.-T., Huang, C.-F., Wang, C.-H., Narra, S., Yang, Y.-W., Wang, C.-L., Hung, C.-H., Diau, E.W.-G.: Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode.”. ACS Energy Lett. 1, 1086–1093 (2016)

    Google Scholar 

  27. Zhang, J., Shang, M.-H., Wang, P., Huang, X., Xu, J., Hu, Z., Zhu, Y., Han, L.: n-Type Doping and Energy States Tuning in CH3NH3Pb1–x Sb2 x/3I3 Perovskite Solar Cells. ACS Energy Lett. 1, 535–541 (2016)

    Google Scholar 

  28. Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T.: CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm. J phys. Chem. Lett. 5, 1004–1011 (2014)

    Google Scholar 

  29. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Google Scholar 

  30. Kayesh, M.E., Chowdhury, T.H., Matsuishi, K., Kaneko, R., Kazaoui, S., Lee, J.J., Noda, T., Islam, A.: Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018)

    Google Scholar 

  31. Hao, F., Stoumpos, C.C., Chang, R.P., Kanatzidis, M.G.: Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)

    Google Scholar 

  32. Yang, L., Cappel, U.B., Unger, E.L., Karlsson, M., Karlsson, K.M., Gabrielsson, E., Sun, L., Boschloo, G., Hagfeldt, A., Johansson, E.M.: Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14, 779–789 (2012)

    Google Scholar 

  33. Zuo, F., Williams, S.T., Liang, P.W., Chueh, C.C., Liao, C.Y., Jen, A.K.Y.: Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454–6460 (2014)

    Google Scholar 

  34. Chen, Q., Zhou, H., Fang, Y., Stieg, A.Z., Song, T.-B., Wang, H.-H., Xu, X., Liu, Y., Lu, S., You, J.: The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015)

    Google Scholar 

  35. Docampo, P., Hanusch, F.C., Stranks, S.D., Döblinger, M., Feckl, J.M., Ehrensperger, M., Minar, N.K., Johnston, M.B., Snaith, H.J., Bein, T.: Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv. Energy Mater. 4, 1400355 (2014)

    Google Scholar 

  36. Lee, S.J., Shin, S.S., Kim, Y.C., Kim, D., Ahn, T.K., Noh, J.H., Seo, J., Seok, S.I.: Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016)

    Google Scholar 

  37. Koh, T.M., Krishnamoorthy, T., Yantara, N., Shi, C., Leong, W.L., Boix, P.P., Grimsdale, A.C., Mhaisalkar, S.G., Mathews, N.: Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3, 14996–15000 (2015)

    Google Scholar 

  38. Koh, T.M., Fu, K., Fang, Y., Chen, S., Sum, T., Mathews, N., Mhaisalkar, S.G., Boix, P.P., Baikie, T.: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2013)

    Google Scholar 

  39. Wetzelaer, G.J.A., Scheepers, M., Sempere, A.M., Momblona, C., Ávila, J., Bolink, H.J.: Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015)

    Google Scholar 

  40. Yang, Z., Rajagopal, A., Jo, S.B., Chueh, C.-C., Williams, S., Huang, C.-C., Katahara, J.K., Hillhouse, H.W., Jen, A.K.-Y.: Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett. 16, 7739–7747 (2016)

    Google Scholar 

  41. Zhang, M., Lyu, M., Yu, H., Yun, J.H., Wang, Q., Wang, L.: Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chem. Eur. J. 21, 434–439 (2015)

    Google Scholar 

  42. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G.: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613–4618 (2013)

    Google Scholar 

  43. Yang, Z., Chueh, C.-C., Liang, P.-W., Crump, M., Lin, F., Zhu, Z., Jen, A.K.-Y.: Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy 22, 328–337 (2016)

    Google Scholar 

  44. Hu, M., Bi, C., Yuan, Y., Bai, Y., Huang, J.: Stabilized wide bandgap MAPbBrxI3–x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3(6), 1500301 (2016)

    Google Scholar 

  45. Braly, I.L., Hillhouse, H.W.: Optoelectronic quality and stability of hybrid perovskites from MAPbI3 to MAPbI2Br using composition spread libraries. J. Phys. Chem. C 120, 893–902 (2016)

    Google Scholar 

  46. Goldschmidt, V.M.: Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926)

    Google Scholar 

  47. Hesse, S., Zimmermann, J., Von Seggern, H., Ehrenberg, H., Fuess, H., Fasel, C., Riedel, R.: CsEuBr 3: crystal structure and its role in the photostimulation of Cs Br:Eu2+. J. Appl. Phys. 100, 083506 (2006)

    Google Scholar 

  48. Shirwadkar, U., van Loef, E., Hawrami, R., Mukhopadhyay, S., Glodo, J., Shah, K.: New promising scintillators for gamma-ray spectroscopy: Cs (Ba,Sr)(Br,I)3. In: IEEE Nuclear Science Symposium Conference Record, 1583-1585 (2011)

  49. Stoumpos, C.C., Kanatzidis, M.G.: The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48, 2791–2802 (2015)

    Google Scholar 

  50. Frolova, L.A., Anokhin, D.V., Gerasimov, K.L., Dremova, N.N., Troshin, P.A.: Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells. J. Phys. Chem. Lett. 7, 4353–4357 (2016)

    Google Scholar 

  51. Zhang, W., Saliba, M., Moore, D.T., Pathak, S.K., Hörantner, M.T., Stergiopoulos, T., Stranks, S.D., Eperon, G.E., Alexander-Webber, J.A., Abate, A.: Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015)

    Google Scholar 

  52. Unger, E.L., Bowring, A.R., Tassone, C.J., Pool, V.L., Gold-Parker, A., Cheacharoen, R., Stone, K.H., Hoke, E.T., Toney, M.F., McGehee, M.D.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014)

    Google Scholar 

  53. Colella, S., Mosconi, E., Pellegrino, G., Alberti, A., Guerra, V.L., Masi, S., Listorti, A., Rizzo, A., Condorelli, G.G., De Angelis, F.: Elusive presence of chloride in mixed halide perovskite solar cells. J. Phys. Chem. Lett. 5, 3532–3538 (2014)

    Google Scholar 

  54. Pérez-del-Rey, D., Forgács, D., Hutter, E.M., Savenije, T.J., Nordlund, D., Schulz, P., Berry, J.J., Sessolo, M., Bolink, H.J.: Strontium Insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 28, 9839–9845 (2016)

    Google Scholar 

  55. Yin, W.J., Chen, H., Shi, T., Wei, S.H., Yan, Y.: Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 1(6), 1500044 (2015)

    Google Scholar 

  56. Zhao, W., Yang, D., Yang, Z., Liu, S.F.: Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Mater. Today Energy 5, 205–213 (2017)

    Google Scholar 

  57. Klug, M.T., Osherov, A., Haghighirad, A.A., Stranks, S.D., Brown, P.R., Bai, S., Wang, J.T.-W., Dang, X., Bulović, V., Snaith, H.J.: Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10, 236–246 (2017)

    Google Scholar 

  58. Heo, J.H., Han, H.J., Kim, D., Ahn, T.K., Im, S.H.: Hysteresis-less inverted CH3NH 3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015)

    Google Scholar 

  59. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J.: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014)

    Google Scholar 

  60. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015)

    Google Scholar 

  61. Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014)

    Google Scholar 

  62. Qing, J., Chandran, H.-T., Cheng, Y.-H., Liu, X.-K., Li, H.-W., Tsang, S.-W., Lo, M.-F., Lee, C.-S.: Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces. 7, 23110–23116 (2015)

    Google Scholar 

  63. Forgács, D., Sessolo, M., Bolink, H.J.: Lead acetate precursor-based pin perovskite solar cells with enhanced reproducibility and low hysteresis. J. Mater. Chem. A 3, 14121–14125 (2015)

    Google Scholar 

  64. Zhu, L., Yuh, B., Schoen, S., Li, X., Aldighaithir, M., Richardson, B.J., Alamer, A., Yu, Q.: Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells. Nanoscale 8, 7621–7630 (2016)

    Google Scholar 

  65. Yang, Z., Rajagopal, A., Chueh, C.C., Jo, S.B., Liu, B., Zhao, T., Jen, A.K.Y.: Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016)

    Google Scholar 

  66. Liu, X., Yang, Z., Chueh, C.-C., Rajagopal, A., Williams, S.T., Sun, Y., Jen, A.K.-Y.: Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J. Mater. Chem. A 4, 17939–17945 (2016)

    Google Scholar 

  67. Liu, C., Fan, J., Li, H., Zhang, C., Mai, Y.: Highly efficient perovskite solar cells with substantial reduction of lead content. Sci. Rep. 6, 35705 (2016)

    Google Scholar 

  68. Li, Y., Sun, W., Yan, W., Ye, S., Rao, H., Peng, H., Zhao, Z., Bian, Z., Liu, Z., Zhou, H.: 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv. Energy Mater. 6, 1601353 (2016)

    Google Scholar 

  69. Chen, Q., Chen, L., Ye, F., Zhao, T., Tang, F., Rajagopal, A., Jiang, Z., Jiang, S., Jen, A.K.-Y., Xie, Y.: Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells. Nano Lett. 17, 3231–3237 (2017)

    Google Scholar 

  70. Ohishi, Y., Oku, T., Suzuki, A.: Fabrication and characterization of perovskite-based CH3NH3Pb1-xGexI3, CH3NH3Pb1-xTlxI3 and CH3NH3Pb1-xInxI3 photovoltaic devices. AIP Conf. Proc. 1709(1), 20020 (2016)

    Google Scholar 

  71. Hamatani, T., Shirahata, Y., Ohishi, Y., Fukaya, M., Oku, T.: Arsenic and chlorine co-doping to CH3NH3PbI3 perovskite solar cells. Adv. Mater. Phys. Chem. 7(01), 1 (2017)

    Google Scholar 

  72. Oku, T., Ohishi, Y., Suzuki, A.: Effects of SbBr 3 addition to CH3NH3PbI3 solar cells. AIP Conf Proc 1807(1), 020007 (2017)

    Google Scholar 

  73. Eperon, G.E., Leijtens, T., Bush, K.A., Prasanna, R., Green, T., Wang, J.T.-W., McMeekin, D.P., Volonakis, G., Milot, R.L., May, R.: Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016)

    Google Scholar 

  74. Zuo, C., Ding, L.: An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6, 9935–9938 (2014)

    Google Scholar 

  75. Li, X., Bi, D., Yi, C., Décoppet, J.-D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., Grätzel, M.: A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58–62 (2016)

    Google Scholar 

  76. Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)

    Google Scholar 

  77. Aharon, S., Cohen, B.E., Etgar, L.: Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 118, 17160–17165 (2014)

    Google Scholar 

  78. Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Google Scholar 

  79. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014)

    Google Scholar 

  80. Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)

    Google Scholar 

  81. Kim, H.-B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S., Kim, J.Y.: Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6, 6679–6683 (2014)

    Google Scholar 

  82. Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Google Scholar 

  83. Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E., Miazza, C.: Efficiency limits for single-junction and tandem solar cells. Solar Energy Mater. Solar Cells 90(18–19), 2952–2959 (2006)

    Google Scholar 

  84. Ke, W., Stoumpos, C.C., Logsdon, J.L., Wasielewski, M.R., Yan, Y., Fang, G., Kanatzidis, M.G.: TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138, 14998–15003 (2016)

    Google Scholar 

  85. Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005)

    Google Scholar 

  86. Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N.A., Chey, S.J., Guha, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013)

    Google Scholar 

  87. Chuang, C.-H.M., Brown, P.R., Bulović, V., Bawendi, M.G.: Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796 (2014)

    Google Scholar 

  88. Chen, L.-J., Lee, C.-R., Chuang, Y.-J., Wu, Z.-H., Chen, C.: Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. J. Phys. Chem. Lett. 7, 5028–5035 (2016)

    Google Scholar 

  89. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)

    Google Scholar 

  90. Cavallini, M., Facchini, M., Massi, M., Biscarini, F.: Bottom–up nanofabrication of materials for organic electronics. Synth. Metals 146, 283–286 (2004)

    Google Scholar 

  91. Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9, 2319–2340 (2007)

    Google Scholar 

  92. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    Google Scholar 

  93. Miller, O.D., Yablonovitch, E., Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012)

    Google Scholar 

  94. Krishnamoorthy, T., Ding, H., Yan, C., Leong, W.L., Baikie, T., Zhang, Z., Sherburne, M., Li, S., Asta, M., Mathews, N.: Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015)

    Google Scholar 

  95. Fabian, D.M., Ardo, S.: Hybrid organic–inorganic solar cells based on bismuth iodide and 1, 6-hexanediammonium dication. J. Mater. Chem. A 4, 6837–6841 (2016)

    Google Scholar 

  96. Yokoyama, T., Cao, D.H., Stoumpos, C.C., Song, T.-B., Sato, Y., Aramaki, S., Kanatzidis, M.G.: Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776–782 (2016)

    Google Scholar 

  97. Zhang, M., Lyu, M., Yun, J.-H., Noori, M., Zhou, X., Cooling, N.A., Wang, Q., Yu, H., Dastoor, P.C., Wang, L.: Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 9, 1570–1577 (2016)

    Google Scholar 

  98. Gupta, S., Bendikov, T., Hodes, G., Cahen, D.: CsSnBr 3, a lead-free halide perovskite for long-term solar cell application: insights on SnF2 addition. ACS Energy Lett. 1, 1028–1033 (2016)

    Google Scholar 

  99. Hsu, H.-Y., Ji, L., Du, M., Zhao, J., Edward, T.Y., Bard, A.J.: Optimization of lead-free organic–inorganic tin (II) halide perovskite semiconductors by scanning electrochemical microscopy. Electrochim. Acta 220, 205–210 (2016)

    Google Scholar 

  100. Yu, Y., Zhao, D., Grice, C.R., Meng, W., Wang, C., Liao, W., Cimaroli, A.J., Zhang, H., Zhu, K., Yan, Y.: Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Adv. 6, 90248–90254 (2016)

    Google Scholar 

  101. Jung, M.-C., Raga, S.R., Qi, Y.: Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition. RSC Adv. 6, 2819–2825 (2016)

    Google Scholar 

  102. Song, T.-B., Yokoyama, T., Stoumpos, C.C., Logsdon, J.L., Cao, D.H., Wasielewski, M.R., Aramaki, S., Kanatzidis, M.G.: Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139(2), 836–842 (2017)

    Google Scholar 

  103. Li, W., Li, J., Li, J., Fan, J., Mai, Y., Wang, L.: Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4, 17104–17110 (2016)

    Google Scholar 

  104. Qiu, X., Cao, B., Yuan, S., Chen, X., Qiu, Z., Jiang, Y., Ye, Q., Wang, H., Zeng, H., Liu, J.: From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)

    Google Scholar 

  105. Sourisseau, S., Louvain, N., Bi, W., Mercier, N., Rondeau, D., Boucher, F., Buzaré, J.-Y., Legein, C.: Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic–inorganic interface. Chem. Mater. 19, 600–607 (2007)

    Google Scholar 

  106. Takahashi, Y., Obara, R., Nakagawa, K., Nakano, M., Tokita, J.-Y., Inabe, T.: Tunable charge transport in soluble organic–inorganic hybrid semiconductors. Chem. Mater. 19, 6312–6316 (2007)

    Google Scholar 

  107. Knutson, J.L., Martin, J.D., Mitzi, D.B.: Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44, 4699–4705 (2005)

    Google Scholar 

Download references

Acknowledgements

Ashraful Islam acknowledges support from JSPS KAKENHI Grant 18H02079. Ashraful Islam and Jae-Joon Lee also acknowledge support from NRF-2016M1A2A2940912 and 2015M1A2A2054996. This work was partly supported by the Ministry of Higher Education (MOHE) Malaysia research grant with code- FRGS/1/2017/TK07/UKM/02/9. I. Bedja extends his appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group NO (RG-1438-041) and RSSU at King Saud University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Joon Lee, Md. Aktharuzzaman or Ashraful Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadi, M.A.A., Chowdhury, T.H., Bedja, I.M. et al. Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells. Electron. Mater. Lett. 15, 525–546 (2019). https://doi.org/10.1007/s13391-019-00149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00149-4

Keywords

Navigation