Skip to main content
Log in

Thin and Broadband Two-Layer Microwave Absorber in 4–12 GHz with Developed Flaky Cobalt Material

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Microwave absorbing materials (MAMs) in the frequency range of 2.0–18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0–18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17–12.05 GHz at a coating thickness of 2.66 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, P., Ng, V.M.H., Yao, Z., Zhou, J., Lei, Y., Yang, Z., Kong, L.B.: Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. J. Alloys Compd. 701, 841–849 (2017)

    Article  Google Scholar 

  2. Yang, Z., Luo, F., Zhou, W., Jia, H., Zhu, D.: Design of a thin and broadband microwave absorber using double layer frequency selective surface. J. Alloys Compd. 699, 534–539 (2017)

    Article  Google Scholar 

  3. Liu, C., Jiang, J., Yuan, Y., Liao, Y., Gong, Y., Zhen, L.: Electromagnetic properties of Co flaky particles prepared via ball-milling method. J. Magn. Magn. Mater. 416, 53–61 (2016)

    Article  Google Scholar 

  4. Liu, X., Qiu, Y., Ma, Y., Zhang, H., Wang, L., Zhang, Q., Chen, Y., Peng, D.: Facile preparation and microwave absorption properties of porous Co/CoO microrods. J. Alloys Compd. 721, 411–418 (2017)

    Article  Google Scholar 

  5. Ma, F., Qin, Y., Li, Y.: Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 96, 202507 (2010)

    Article  Google Scholar 

  6. Li, W., Lv, J., Zhou, X., Zheng, J., Ying, Y., Qiao, L., Yu, J., Che, S.: Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites. J. Magn. Magn. Mater. 426, 504–509 (2017)

    Article  Google Scholar 

  7. Khani, O., Shoushtari, M.Z., Ackland, K., Stamenov, P.: The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J. Magn. Magn. Mater. 428, 28–35 (2017)

    Article  Google Scholar 

  8. Weng, X., Li, B., Zhang, Y., Lv, X., Gu, G.: Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloys Compd. 695, 508–519 (2017)

    Article  Google Scholar 

  9. Cao, L., Jiang, J., Wang, Z., Gong, Y., Liu, C.: Electromagnetic properties of flake shaped Fe-Si particles prepared by ball milling. J. Magn. Magn. Mater. 368, 295–299 (2014)

    Article  Google Scholar 

  10. Liu, C., Yuan, Y., Jiang, J., Gong, Y., Zhen, L.: Microwave absorption properties of FeSi flaky particles prepared via a ball milling process. J. Magn. Magn. Mater. 395, 152–158 (2015)

    Article  Google Scholar 

  11. Sun, J., Xu, H., Shen, Y., Bi, H., Liang, W., Yang, R.-B.: Enhanced microwave absorption properties of milled flake-shaped FeSiAl/graphite composites. J. Alloys Compd. 548, 18–22 (2013)

    Article  Google Scholar 

  12. Min, D., Zhou, W., Luo, F., Zhu, D.: Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite. J. Magn. Magn. Mater. 435, 26–32 (2017)

    Article  Google Scholar 

  13. Qing, Y., Zhou, W., Luo, F., Zhu, D.: Thin-thickness FeSiAl/flake graphite-filled Al2O3 ceramics with enhanced microwave absorption. Ceram. Int. 43, 870–874 (2017)

    Article  Google Scholar 

  14. Chen, C.C., et al.: Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.01.045. (in press)

    Google Scholar 

  15. Shen, X., Song, F., Xiang, J., Liu, M., Zhu, Y., Wang, Y.: Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers. J. Am. Ceram. Soc. 95(120), 3863–3870 (2012)

    Article  Google Scholar 

  16. Wasler, R.M., Win, W., Valanju, P.M.: Shape-Optimized Ferromagnetic particles with maximum theoretical microwave susceptibility. IEEE Trans. Magn. 34(4), 1390–1392 (1998)

    Article  Google Scholar 

  17. Zhou, P.H., Deng, L.J., Xie, J.L., Liang, D.F.: Effect of particle morphology and crystal structure on the microwave properties of flake-like nanocrystalline Fe3Co2 particles. J. Alloys Compd. 448, 303–307 (2008)

    Article  Google Scholar 

  18. He, J., Wang, W., Guan, J.: Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111, 093924 (2012)

    Article  Google Scholar 

  19. Gill, N., Smitha, P., Singh, D., Agarwala, V.: Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range of 2–8 GHz. J. Mater. Sci. Mater. Electron. 28, 1259–1270 (2017)

    Article  Google Scholar 

  20. Wang, M., Wang, Z., Wang, P., Liao, Y., Bi, H.: Single-layer and double-layer microwave absorbers based on Co67Ni33 microspheres and Ni0.6Zn0.4Fe2O4 nanocrystals. J. Magn. Magn. Mater. 425, 25–30 (2017)

    Article  Google Scholar 

  21. Truong, V.T., Riddell, S.Z., Muscat, R.F.: Polypyrrol based microwave absorber. J. Mater. Sci. 33, 4971–4976 (1998)

    Article  Google Scholar 

  22. Parida, R.C., Singh, D., Agarwal, N.K.: Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band. Indian J. Radio Space 36, 145–152 (2007)

    Google Scholar 

  23. Najim, M., Smitha, P., Agarwala, V., Singh, D.: Design of light weight multi-layered coating of zinc oxide-iron-graphite nano-composites for ultra-wide bandwidth microwave absorption. J. Mater. Sci. Mater. Electron. 26, 7367–7377 (2015)

    Article  Google Scholar 

  24. Panwar, R., Puthucheri, S., Agarwala, V., Singh, D.: An efficient use of waste material for the development of cost-effective broadband radar wave absorber. J. Electromagn. Waves Appl. 29(9), 1238–1255 (2015)

    Article  Google Scholar 

  25. Panwar, R., Puthucheri, S., Agarwala, V., Singh, D.: Effect of particle size on radar wave absorption of Fractal Frequency Selective Surfaces loaded multi-layered Structures. In: IEEE International Microwave and RF Conference, pp. 186–189 (2014)

  26. Wang, X., Gong, R., Li, P., Liu, L., Cheng, W.: Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng. A 466, 178–182 (2007)

    Article  Google Scholar 

  27. Das, S., Bansal, A., Sharma, A.K.: Theory of welding of metallic parts in microwave cavity applicator. Fundam. J. Mod. Phys. 3, 125–155 (2012)

    Google Scholar 

  28. Sucksmith, W., Thompson, J.E.: The magnetic anisotropy of cobalt. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 225(1162), 362–375 (1954)

    Article  Google Scholar 

  29. O’Shea, V., Moreira, I., Roldán, A., Illas, F.: Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations. J. Chemi. Phys. 133(024701), 1–8 (2010)

    Google Scholar 

  30. Sort, J., Nogues, J., Surinac, S., Baro, M.D.: Microstructural aspects of the hcp-fcc allotropic phase transformation induced in cobalt by ball milling. Philos. Mag. 83(4), 439–455 (2010). https://doi.org/10.1080/0141861021000047159

    Article  Google Scholar 

  31. Li, Y., Qiu, W., Qin, F., Fang, H., Hadjiev, V.G., Litvinov, D., Bao, J.: Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy. J. Phys. Chem. C 120, 4511–4516 (2016)

    Article  Google Scholar 

  32. Weir, W.B.: Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62(1), 33 (1974)

    Article  Google Scholar 

  33. Ghodgaonkar, D.K., Varadan, V.V., Vardan, V.K.: Free space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas. 39(2), 387 (1990)

    Article  Google Scholar 

  34. Li, W., Wu, T., Wang, W., et al.: Broadband patterned magnetic microwave absorber. J. Appl. Phys. 116(4), 044110 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-SERB (Department of Science and Technology-Science and Engineering Research Board), Government of India, for the financial support. First author acknowledges All India Council of Technical Education, India for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, N., Singh, J., Puthucheri, S. et al. Thin and Broadband Two-Layer Microwave Absorber in 4–12 GHz with Developed Flaky Cobalt Material. Electron. Mater. Lett. 14, 288–297 (2018). https://doi.org/10.1007/s13391-018-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0025-2

Keywords

Navigation