Skip to main content
Log in

Selective enhancement of intra-chain charge transport to improve ammonia sensing performance in polyaniline layers

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Polyaniline (PAni) is a p-type conductive polymer and its conductivity decreases upon exposure to ammonia. Ammonia molecules affect the intra-chain charge transfer process. The inter-chain resistance is higher than the intra-chain resistance. Thus, the ammonia sensing performance is highly attenuated by the influence of inter-chain resistance. Here, we report a facile method for the selective enhancement of the intra-chain charge transport process in a PAni film. The use of a good solvent such as toluene is demonstrated to increase the PAni molecular length, to reduce the inter-chain transitions, and to improve the ammonia sensing performance of the PAni film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-W. Han, B. Kim, J. Li, and M. Meyyappan, Appl. Phys. Lett. 102, 193104 (2013).

    Article  Google Scholar 

  2. S. K. Mishra, D. Kumari, and B. D. Gupta, Sens. Actuators, B: Chem. 171–172, 976 (2012).

    Article  Google Scholar 

  3. Y. Takao, K. Miyazaki, Y. Shimizu, and M. Egashira, J. Electrochem. Soc. 141, 1028 (1994).

    Article  Google Scholar 

  4. T. Hibbard and A. J. Killard, J. Breath Res. 5, 037101 (2011).

    Article  Google Scholar 

  5. S. Cui, H. Pu, G. Lu, Z. Wen, E. C. Mattson, C. Hirschmugl, M. G. Josifovska, M. Weinert, and J. Chen, ACS Appl. Mater. Interfaces 4, 4898 (2012).

    Article  Google Scholar 

  6. T. Hibbarda, K. Crowleya, and A. J. Killard, Anal. Chim. Acta 779, 56 (2013).

    Article  Google Scholar 

  7. H.-W. Zan, C.-H. Li, C.-C. Yeh, M.-Z. Dai, H.-F. Meng, and C.-C. Tsai, Appl. Phys. Lett. 98, 253503 (2011).

    Article  Google Scholar 

  8. F. Tavoli and N. Alizadeh, Sens. Actuators, B: Chem. 176, 761 (2013).

    Article  Google Scholar 

  9. T. Wang, S. Korposh, R. Wong, S. James, R. Tatam, and S.-W. Lee, Chem. Lett. 41, 12971299 (2012).

    Google Scholar 

  10. M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts, Atmos. Meas. Tech. 7, 2733 (2014).

    Article  Google Scholar 

  11. F. Hossein-Babaei and V. Ghafarinia, Anal. Chem. 82, 8349 (2010).

    Article  Google Scholar 

  12. S. Elouali, L. G. Bloor, R. Binions, I. P. Parkin, C. J. Carmalt, and J. A. Darr, Langmuir 28, 1879 (2012).

    Article  Google Scholar 

  13. B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar, and A. C. Bose, Opt. Laser Technol. 43, 1398 (2011).

    Article  Google Scholar 

  14. F. Hossein-Babaei, Electron. Lett. 17, 161 (2008).

    Article  Google Scholar 

  15. L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, Adv. Mater. 25, 3419 (2013).

    Article  Google Scholar 

  16. S. Han, W. Huang, W. Shi, and J. Yu, Sens. Actuators, B: Chem. 203, 9 (2014).

    Article  Google Scholar 

  17. W. Huang, J. Yu, X. Yu, and W. Shi, Org. Electron. 14, 3453 (2013).

    Article  Google Scholar 

  18. X. Tian, Q. Wang, X. Chen, W. Yang, Z. Wu, X. Xu, M. Jiang, and Z. Zhou, Appl. Phys. Lett. 105, 203109 (2014).

    Article  Google Scholar 

  19. F. Hossein-Babaei, P. Shabani, and M. Azadinia, Appl. Phys. Lett. 103, 223303 (2013).

    Article  Google Scholar 

  20. F. Hossein-Babaei and P. Shabani, Sens. Actuators, B: Chem. 205, 143 (2014).

    Article  Google Scholar 

  21. B. Timmer, W. Olthuis, and A. V. D. Berg, Sens. Actuators, B: Chem. 107, 666 (2005).

    Article  Google Scholar 

  22. K. Besar, S. Yang, X. Guo, W. Huang, A. M. Rule, P. N. Breysse, I. J. Kymissis, and H. E. Katz, Org. Electron. 15, 3221 (2014).

    Article  Google Scholar 

  23. S. P. Basak, B. Kanjilal, P. Sarkar, and A. P. F. Turner, Synth. Met. 175, 127 (2013).

    Article  Google Scholar 

  24. S. Virji, J. Huang, R. B. Kaner, and B. H. Weiller, Nano Lett. 4, 491 (2004).

    Article  Google Scholar 

  25. T. Patois, J.-B. Sanchez, F. Berger, J.-Y. Rauch, P. Fievet, and B. Lakard, Sens. Actuators, B: Chem. 171–172, 431 (2012).

    Article  Google Scholar 

  26. G. Ciric-Marjanovic, Synth. Met. 170, 31 (2013).

    Article  Google Scholar 

  27. A. A. Syed and M. K. Dinesan, Talanta 38, 815 (1991).

    Article  Google Scholar 

  28. P. Kumar, A. Misra, M. N. Kamalasanan, S. C. Jain, and V. Kumar, J. Phys. D: Appl. Phys. 40, 561 (2007).

    Article  Google Scholar 

  29. C. Liu, Z. Noda, K. Sasaki, and K. Hayashi, Int. J. Hydrogen Energy 37, 13529 (2012).

    Article  Google Scholar 

  30. J. Bhadra, N. J. Al-Thani, N. K. Madi, and M. A. Al-Maadeed, Synth. Met. 181, 27 (2013).

    Article  Google Scholar 

  31. H. Bai and G. Shi, Sensors 7, 267 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, P., Qarehbaqi, A. & Boroumand, F.A. Selective enhancement of intra-chain charge transport to improve ammonia sensing performance in polyaniline layers. Electron. Mater. Lett. 12, 107–112 (2016). https://doi.org/10.1007/s13391-015-5226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5226-3

Keywords

Navigation