Skip to main content
Log in

Nano-geometry dependent electrical property of organic semiconductor

  • Original Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this work, we manipulated the crystallinity and geometry of P3HT nanodomains and investigated their effects on carrier mobility of organic thin film transistor (OTFT). Furthermore, it was confirmed that the reproducibility of OTFT devices could be improved with nanostructure-based active layer. P3HT nanostructures, nanodot and nanowire, were prepared through the control of polymer solution concentration and ultrasonic treatment. Those nanostructures produced well-organized crystalline morphology, which resulted in outperforming field-effect mobility, compared to bulk P3HT film, thermally annealed after spin-casting. OTFT devices fabricated with P3HT nanowires showed slightly higher electrical mobility than those with nanodots, due to their geometric advantage for inter-connection between electrodes. In terms of device-to-device uniformity, nanodot-based devices have lower performance variation among OTFT arrays due to their symmetric geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).

    Article  Google Scholar 

  2. M. Kobashi and H. Takeuchi, Macromolecules 31, 7273 (1998).

    Article  Google Scholar 

  3. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).

    Article  Google Scholar 

  4. B.-G. Kim, E. J. Jeong, J. W. Chung, S. Seo, B. Koo, and J. Kim, Nat. Mater. 12, 659 (2013).

    Article  Google Scholar 

  5. Y. K. Lee, M. Maniruzzaman, C. Lee, M. J. Lee, E.-G. Lee, and J. Lee, Electron. Mater. Lett. 9, 741 (2013).

    Article  Google Scholar 

  6. S.-W. Lee, C.-H. Kim, S.-G. Lee, J.-H. Jeong, J.-H. Choi, E.-S. Lee, Electron. Mater. Lett. 9, 471 (2013).

    Article  Google Scholar 

  7. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. S. Liu, and J. M. J. Frechet, Adv. Mater. 15, 1519 (2013).

    Article  Google Scholar 

  8. R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, Nat. Mater. 12, 1038 (2103).

    Article  Google Scholar 

  9. S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A.J. Heeger, M. Surin, and R. Lazzaroni, J. Appl. Phys. 100, 114503 (2006).

    Article  Google Scholar 

  10. J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. M. Culloch, and H. Sirringhaus, Chem. Mater. 16, 4772 (2004).

    Article  Google Scholar 

  11. H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, Adv. Funct. Mater. 15, 671 (2005).

    Article  Google Scholar 

  12. D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, and K. Cho, Adv. Funct. Mater. 15, 77 (2005).

    Article  Google Scholar 

  13. H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, Adv. Mater. 22, E247 (2010).

  14. H. J. Park, H. Kim, J. Y. Lee, T. Lee, and L. J. Guo, Energy Environ. Sci. 6, 2203 (2013).

    Article  Google Scholar 

  15. H. J. Park, J. Y. Lee, T. Lee, and L. J. Guo, Adv. Energy Mater. 3, 1135 (2013).

    Article  Google Scholar 

  16. G. Wang, J. Swensen, D. Moses, and A. J. Heeger, J. Appl. Phys. 93, 6137 (2003).

    Article  Google Scholar 

  17. S.-Y. Min, T.-S. Kim, B. J. Kim, H. Cho, Y.-Y. Noh, H. Yang, J. H. Cho, and T.-W. Lee, Nature Commun. 4, 1773 (2013).

    Article  Google Scholar 

  18. H. Cho, S.-Y. Min, and T.-W. Lee, Macromol. Mater. Eng. 298, 475 (2013).

    Article  Google Scholar 

  19. B.-G. Kim, M.-S. Kim, and J. Kim, ACS Nano 4, 2160 (2010).

    Article  Google Scholar 

  20. B. O’Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney, and D. M. DeLongchamp, Adv. Funct. Mater. 21, 3697 (2011).

    Article  Google Scholar 

  21. H. R. Tseng, L. Ying, B. B. Y. Hsu, L. A. Perez, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nano Lett. 12, 6353 (2012).

    Article  Google Scholar 

  22. R. J. Li, L. Jiang, Q. Meng, J. H. Gao, H. X. Li, Q. X. Tang, M. He, W. P. Hu, Y. Q. Liu, and D. B. Zhu, Adv. Mater. 21, 4492 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Hyuk Park or Hui Joon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BG., Kwon, U., Park, D.H. et al. Nano-geometry dependent electrical property of organic semiconductor. Electron. Mater. Lett. 11, 435–439 (2015). https://doi.org/10.1007/s13391-014-4457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4457-z

Keywords

Navigation