Skip to main content
Log in

Effect of annealing on lattice strain and near-band-edge emission of ZnO nanorods

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effect of air and oxygen annealing on the structural and the optical properties of hydrothermally synthesized ZnO nanorods was investigated. After hydrothermal synthesis, the resulting ZnO nanorods were annealed in air and under an oxygen atmosphere at 370°C for 1 h. X-ray diffraction results revealed that the oxygen-annealed nanorods possessed high crystallinity with a hexagonal-wurtzite crystal structure in the (002) plane. Evaluation of strain showed a tensile lattice strain of 0.426% resulting from oxygen annealing. The photoluminescence measurements showed that the relative intensity ratio of the near-band-edge emission (NBE) to the green emission (I NBE /I GE ) increased from ~2.6 for the as-grown ZnO nanorods to ~68.7 when the nanorods were annealed under oxygen. After annealing, a red shift of ~30 and ~44 meV in the NBE was observed for the nanorods that were annealed in air and under oxygen, respectively. This shift is attributed to the interaction between the neutral acceptors and the adsorbed oxygen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  2. C. H. Park, S. B. Zhang, and S. H. Wei, Phys. Rev. B. 66, 073202 (2002).

    Article  Google Scholar 

  3. W. Benjamin, Z. Zhengzhi, L. Yinhu, and D. Yulin, Nanoscale 2, 1573 (2010).

    Article  Google Scholar 

  4. A. Janotti and C. van de Walle, Phys. Rev. B. 76, 165202 (2007).

    Article  Google Scholar 

  5. Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, Langmuir 26, 603 (2010).

    Article  Google Scholar 

  6. P. K Samanta, S. K. Patra, and P. R. Chaudhuri, Int. J. Nanosci. Nanotechnol. 81, 20865 (2009).

    Google Scholar 

  7. M. Babikier, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, SQ. Yu, and S. Jiao, J. Mater. Sci.: Mater. Electron. 25, 157 (2014).

    Google Scholar 

  8. G. Sanon, R. Rup, and A. Mansingh, Thin Solid Films 190, 287 (1989).

    Article  Google Scholar 

  9. B. Yu, X. Xu, S. Zhuang, J. Pan, and J. Hu, Mater. Lett. 82, 145 (2012).

    Article  Google Scholar 

  10. R. Dingl, Phy. Rev. Lett. 23, 579 (1969).

    Article  Google Scholar 

  11. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).

    Article  Google Scholar 

  12. S. Lin, H. Hu, W. Zheng, Y. Qu, and F. Lai, Nanoscale. Res. Lett. 8, 158 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babikier, M., Wang, J., Wang, D. et al. Effect of annealing on lattice strain and near-band-edge emission of ZnO nanorods. Electron. Mater. Lett. 10, 749–752 (2014). https://doi.org/10.1007/s13391-014-4007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4007-8

Keywords

Navigation