Skip to main content
Log in

Effect of substrate temperature on structural, optical and electrical properties of sputtered NiO-Ag nanocrystalline thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

NiO-Ag thin films were deposited on Corning 7059 glass substrates by DC reactive magnetron sputtering technique and investigated the substrate temperature (T s ) dependent properties of NiO-Ag thin films. X-ray diffraction results showed that crystalline films can be obtained at high T s and all films have a preferred crystal growth texture with face centered cubic (f cc ) structure and was also confirmed by Raman studies. The grain size, transmittance, band gap, mobility and carrier concentrations were increased with T s . Room temperature deposited films have an average roughness around 6.9 nm where as increment of T s resulted in increased roughness up to 14 nm with nanocrystalline morphology. The optimum substrate temperature to obtain NiO-Ag films was found to be 200°C. It was found that with increasing the T s , resistivity of the films was significantly decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Makimura, A. Rougier, and J. M. Tarascon, Appl. Surf. Sci. 252, 4593 (2006).

    Article  Google Scholar 

  2. J. Bandara, C. M. Divarathne, and S. D. Nanayakkara, Sol. Energy Mater. Sol. Cells 81, 429 (2004).

    Article  Google Scholar 

  3. M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamada, Jpn. J. Appl. Phys. 33, 6656 (1994).

    Article  Google Scholar 

  4. H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films 236, 27 (1993).

    Article  Google Scholar 

  5. H. Kumagai, M. Matsumoto, K. Toyoda, and M. Obara, J. Mater. Sci. Lett. 15, 1081 (1996).

    Article  Google Scholar 

  6. Y. R. Park and K. J. Kim, J. Cryst. Growth. 258, 380 (2003).

    Article  Google Scholar 

  7. B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, and J. C. Bernede, Appl. Surf. Sci. 253, 4330 (2007).

    Article  Google Scholar 

  8. W. C. Yeh and M. Matsumura, Japan J. Appl. Phys. 36, 6884 (1997).

    Article  Google Scholar 

  9. U. S. Joshi, R. Takahashi, Y. Matsumoto, and H. Koinuma, Thin Solid Films 486, 214 (2005).

    Article  Google Scholar 

  10. Y. Kakehi, S. Nakao, K. Satoh, and T. Kusaka, J. Cryst. Growth 237–239, 591 (2002).

    Article  Google Scholar 

  11. D. Franta, B. Negulescu, L. Thomas, P. R. Dahoo, M. Guyot, I. Ohlidal, J. Mistrik, and T. Yamaguchi, Appl. Surf. Sci. 244, 426 (2005).

    Article  Google Scholar 

  12. H. L. Chen, Y. M. Lu, and W. S. Hwang, Thin Solid Films 498, 266 (2006).

    Article  Google Scholar 

  13. Y. M. Lu, W. S. Hwang, J. S. Yang, and H. C. Chuang, Thin Solid Films 420–421, 54 (2002).

    Article  Google Scholar 

  14. Y. Zhou, D. H. Gu, Y. Y. Geng, and F. X. Gan, Mater. Sci. Eng. B 135, 125 (2006).

    Article  Google Scholar 

  15. S. H. Huang, H. Xiao, and S. Shou, Appl. Surf. Sci. 255, 4547 (2011).

    Article  Google Scholar 

  16. W. Y. Wang, J. H. Huang, X. P. Zhang, Y. Yang, W. J. Song, and F. Q. Huang, J. Cryst. Growth 321, 50 (2011).

    Article  Google Scholar 

  17. C. H. Liu, L. Zhang, and H. Yuan-Jin, Thin Solid Films 304, 13 (1997).

    Article  Google Scholar 

  18. Y. Ding, Y. Wang, L. Su, H. Zhang, and Y. Lei, J. Mater. Chem. 20, 9918 (2010).

    Article  Google Scholar 

  19. E. D. Gaspera, V. Bello, G. Mattei, and A. Martucci, Mater. Chem. Phys. 131, 313 (2011).

    Article  Google Scholar 

  20. J. W. Lung, L. Y. Ming, H. W. Sing, and C. W. Chien, J. Eur. Cer. Soc. 30, 503 (2010).

    Article  Google Scholar 

  21. L. Zhao, G. Su, W. Liu, L. Cao, J. Wang, Z. Dong, and M. Song, Appl. Surf. Sci. 257, 3974 (2011).

    Article  Google Scholar 

  22. M. Yang, Z. Shi, J. Feng, H. Pu, G. Li, J. Zhou, and Q. Zhang, Thin Solid Films 519, 3021 (2011).

    Article  Google Scholar 

  23. Y. Ashok Kumar Reddy, A. Sivasankar Reddy, and P. Sreedhara Reddy, J. Mater. Sci. Technol. 2, 647 (2013).

    Article  Google Scholar 

  24. R. Snyders, M. Wautelet, R. Gouttebaron, J. P. Dauchot, and M. Hecq, Surf. Coat. Technol. 174–175, 1282 (2003).

    Article  Google Scholar 

  25. P. Y. Yang, F. Zeng, and F. Pan, J. Magn. Magn. Mater. 322, 542 (2010).

    Article  Google Scholar 

  26. Y. W. Lu, X. W. Du, J. Sun, S. L. Hu, X. Han, and H. Li, Appl. Phys. Lett. 90, 241910 (2007).

    Article  Google Scholar 

  27. A. B. Abdelmoumen, R. Cherfi, M. Kechoune, and M. Aoucher, Thin Solid Films 517, 369 (2008).

    Article  Google Scholar 

  28. W. L. Jang, Y. M. Lu, W. S. Hwang, T. L. Hsiung, and H. P. Wang, Surf. Coat. Technol. 202, 5444 (2008).

    Article  Google Scholar 

  29. B. D. Cullity, Elements of X-ray Diffraction, Second ed., Addison-Wesley, MA (1978).

    Google Scholar 

  30. R. E. Dietz, G. I. Parisot, and A. E. Meixner, Phys. Rev. B 4, 2302 (1971).

    Article  Google Scholar 

  31. E. Cazzanelli, A. Kuzmin, G. Mariotto, and N. Mironova-Ulmane, Proceedings of SPIE, 5122, 68 (2003).

    Article  Google Scholar 

  32. K. M. E. Miedzinska, B. R. Hollebone, and J. G. Cook, J. Phys. Chem. Solids 49, 1355 (1988).

    Article  Google Scholar 

  33. F. X. Bock, T. M. Christensen, S. B. Rivers, L. D. Doucette, and R. J. Lad, Thin Solid Films 468, 57 (2004).

    Article  Google Scholar 

  34. K. L. Chopra and S. R. Das, Thin Film Solar Cells, Plenum Press, New York (1983).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ashok Kumar Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok Kumar Reddy, Y., Ajitha, B., Sreedhara Reddy, P. et al. Effect of substrate temperature on structural, optical and electrical properties of sputtered NiO-Ag nanocrystalline thin films. Electron. Mater. Lett. 10, 907–913 (2014). https://doi.org/10.1007/s13391-014-3351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3351-z

Keywords

Navigation