Skip to main content
Log in

A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

PMMA-HRG (Poly (methyl methacrylate)-highly reduced graphene) nanocomposites were prepared by a solution blending method, and the effect of HRG loading on the electrical, mechanical, and thermal properties of the materials was studied. PMMA-HRG nanocomposites achieved a percolation threshold of 0.37 vol.% (0.039 S/m) and a maximum electrical conductivity as high as 85 S/m at a loading of 2.7 vol. %. The homogeneous dispersion of HRG sheets overcame aggregation in solution and gave a uniformly distributed single layer graphene in the PMMA matrix. The T g of PMMA-HRG increased by 19°C with a loading of 0.27 vol. %, and the storage modulus of the nanocomposites increased by 37% in the glassy region with a loading of 2.7 vol. %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Chen, D.-J. Wu, W.-G. Weng, and W.-L. Yan, J. Appl. Polym. Sci. 82, 2506 (2001).

    Article  CAS  Google Scholar 

  2. S. G. Shin, Electron. Mater. Lett. 7, 237 (2011).

    Article  CAS  Google Scholar 

  3. E. Kim, W.-G. Lee, and J. Jung, Electron. Mater. Lett. 7, 261 (2011).

    Article  CAS  Google Scholar 

  4. S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B. S. Kong, K. W. Paik, and S. Jeon, Adv. Mater. 25, 732 (2013).

    Article  CAS  Google Scholar 

  5. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, and Z.-Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011).

    Article  CAS  Google Scholar 

  6. S.-G. Shin and I. K. Kwon, Electron. Mater. Lett. 7, 249 (2011).

    Article  CAS  Google Scholar 

  7. V. H. Pham, T. V. Cuong, T. T. Dang, S. H. Hur, B.-S. Kong, E. J. Kim, E. W. Shin, and J. S. Chung, J. Mater. Chem. 21, 11312 (2011).

    Article  CAS  Google Scholar 

  8. J. R. Potts, S. H. Lee, T. M. Alam, J. An, M. D. Stoller, R. D. Piner, and R. S. Ruoff, Carbon 49, 2615 (2011).

    Article  CAS  Google Scholar 

  9. R. Wissert, P. Steurer, S. Schopp, R. Thomann, and R. Mülhaupt, Macromol. Mater. Eng. 295, 1107 (2010).

    Article  CAS  Google Scholar 

  10. T. T. Dang, V. H. Pham, S. H. Hur, E. J. Kim, B.-S. Kong, and J. S. Chung, J. Colloid Interf. Sci. 376, 91 (2012).

    Article  CAS  Google Scholar 

  11. V. H. Pham, T. T. Dang, T. V. Cuong, S. H. Hur, B. S. Kong, E. J. Kim, and J. S. Chung, Korean J. Chem. Eng. 29, 680 (2012).

    Article  CAS  Google Scholar 

  12. H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, and C. Xu, Chem. Phys. Lett. 484, 247 (2010).

    Article  CAS  Google Scholar 

  13. R. K. Layek, S. Samanta, D. P. Chatterjee, and A. K. Nandi, Polymer 51, 5846 (2010).

    Article  CAS  Google Scholar 

  14. S. Valanarasu, A. Kathalingam, V. Senthilkumar, V. Kannan, and J. K. Rhee, Electron. Mater. Lett. 8, 649 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Suk Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramaniyan, R., Pham, V.H., Jang, J. et al. A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites. Electron. Mater. Lett. 9, 837–839 (2013). https://doi.org/10.1007/s13391-013-6025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-6025-3

Keywords

Navigation