Skip to main content
Log in

Electro-optical characterization of nanoGUMBOS

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Molecular electronics, where nanoscale organic species are utilized as active electronic components, offers a promising approach towards ultimate miniaturization and integration of hybrid electronic materials (HEMs) with traditional silicon based complementary metal oxide semiconductors (CMOS) technology. Toward this end, fundamental research studies to understand the electronic and optical properties of these molecules are of paramount importance. In this work, conductive probe atomic force microscopy (CP-AFM) and Raman spectroscopy have been performed on ionic liquid based unique organic nanoparticles derived from a Group of Uniform Materials Based on Organic Salts (GUMBOS). Aptly named as nanoGUMBOS, the material investigated in this report is Rhodamine6G tetraphenylborate ([R6G][TPB]) as has been synthesized by a room temperature facile metathesis reaction between Rhodamine 6G chloride (R6GCl) and sodium tetraphenylborate (NaTPB) followed by an ultrasonication-assisted, additive-free, re-precipitation reaction. To the best of our knowledge, the results reported herein are first-time evidence of electrical performance exhibited by [R6G][TPB] nanoGUMBOS. In conjunction with the supportive results of Raman spectra, the current-voltage (I-V) characteristics obtained are indicative of the potential incorporation of this unique compound in hybrid electronics with respect to potential applications in optoelectronics and chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. E. Foster, Nanotechnology: Science, Innovation, and Opportunity, 1st ed., Prentice Hall (2005).

    Google Scholar 

  2. B. Yu and M. Meyyappan, Solid-State Electron. 50, 536 (2006).

    Article  Google Scholar 

  3. G. E. Moore, Proc. of IEEE, 86, 82 (1998).

    Article  Google Scholar 

  4. J. R. Heath, Annu. Rev. Mater. Res. 39, 1 (2009).

    Article  Google Scholar 

  5. H. Iijima, K. Kimura, T. Sakai, A. Uchimura, T. Shimizu, H. Ueno, T. Natori, Y. Koezuka, and Y. Wei, Supramol. Sci. 5, 723 (1998).

    Article  Google Scholar 

  6. T. Daniels-Race, in Bull. Am. Phys. Soc., American Physical Society (2008).

    Google Scholar 

  7. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).

    Article  Google Scholar 

  8. A. Tesfai, B. El-Zahab, D. K. Bwambok, G. A. Baker, S. O. Fakayode, M. Lowry, and I. M. Warner, Nano Lett. 8, 897 (2008).

    Article  Google Scholar 

  9. S. Das, D. Bwambok, B. El-Zahab, J. Monk, S. L. de Rooy, S. Challa, M. Li, F. R. Hung, G. A. Baker, and I. M. Warner, Langmuir ACS J. Surfaces Colloids 26, 12867 (2010).

    Article  Google Scholar 

  10. A. Tesfai, B. El-Zahab, A. T. Kelley, M. Li, J. C. Garno, G. A. Baker, and I. M. Warner, ACS Nano 3, 3244 (2009).

    Article  Google Scholar 

  11. A. N. Jordan, S. Das, N. Siraj, S. L. de Rooy, M. Li, B. El-Zahab, L. Chandler, G. A. Baker, and I. M. Warner, Nanoscale 4, 5031 (2012).

    Article  Google Scholar 

  12. S. L. de Rooy, B. El-Zahab, M. Li, S. Das, E. Broering, L. Chandler, and I. M. Warner, Chem. Commun. 47, 8916 (2011).

    Article  Google Scholar 

  13. D. K. Bwambok, B. El-Zahab, S. K. Challa, M. Li, L. Chandler, G. A. Baker, and I. M. Warner, ACS Nano 3, 3854 (2009).

    Article  Google Scholar 

  14. J. C. Dumke, B. El-Zahab, S. Challa, S. Das, L. Chandler, M. Tolocka, D. J. Hayes, and I. M. Warner, Langmuir 26, 15599 (2010).

    Article  Google Scholar 

  15. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  16. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  Google Scholar 

  17. D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990).

    Article  Google Scholar 

  18. S. Liu and Y. Wang, Scanning 32, 61 (2010).

    Article  Google Scholar 

  19. S. Bandyopadhyay, S. K. Samudrala, A. K. Bhowmick, and S. K. Gupta, in Funct. Nanostructures, Springer, New York, pp. 504–568 (2008).

    Book  Google Scholar 

  20. H. Yang, Y. Wang, S. Lai, H. An, Y. Li, and F. Chen, J. Food Sci. 72, R65 (2007).

    Article  Google Scholar 

  21. A. Alessandrini, Meas. Sci. Technol. 16, R65 (2005).

    Article  Google Scholar 

  22. N. Jalili, Mechatronics, 14, 907 (2004).

    Article  Google Scholar 

  23. K. S. Birdi, Scanning Probe Microscopes-Applications in Science and Technology, CRC Press, New York (2003).

    Book  Google Scholar 

  24. N. H. T. S. Kasas, Int. J. Imaging Syst. Technol. 8, 151 (1997).

    Article  Google Scholar 

  25. T. Ushiki, J. Hitomi, S. Ogura, T. Umemoto, and M. Shigeno, Arch. Histol. Cytol. 59, 421 (1996).

    Article  Google Scholar 

  26. H. Hansma and J. Hoh, Annu. Rev. Biophys. Biomol. Struct. 23, 115 (1994).

    Article  Google Scholar 

  27. E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip, Springer (2003).

    Google Scholar 

  28. T. W. Kelley, E. Granstrom, and C. D. Frisbie, Adv. Mater. 11, 261 (1999).

    Article  Google Scholar 

  29. L. S. C. Pingree, O. G. Reid, and D. S. Ginger, Adv. Mater. 21, 19 (2009).

    Article  Google Scholar 

  30. B. B. Alba Avila, Crit. Rev. Solid State Mater. Sci. 35, 38 (2010).

    Article  Google Scholar 

  31. J. Liang and G. Scoles, J. Phys. Chem. C 114, 10836 (2010).

    Article  Google Scholar 

  32. M. E. Greene, C. R. Kinser, D. E. Kramer, L. S. C. Pingree, and M. C. Hersam, Microsc. Res. Tech. 64, 415 (2004).

    Article  Google Scholar 

  33. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, CRC Press, New York (2001).

    Google Scholar 

  34. A. Kudelski, Talanta 76, 1 (2008).

    Article  Google Scholar 

  35. Z. Movasaghi, S. Rehman, and I. U. Rehman, Appl. Spectrosc. Rev. 42, 493 (2007).

    Article  Google Scholar 

  36. W. L. Peticolas, Biochimie 57, 417 (1975).

    Article  Google Scholar 

  37. S. Das, Chem. Geol. 290, 101 (2011).

    Article  Google Scholar 

  38. D. Bersani and J. M. Madariaga, J. Raman Spectrosc. 43, 1523 (2012).

    Article  Google Scholar 

  39. E. V. Efremov, F. Ariese, and C. Gooijer, Anal. Chim. Acta 606, 119 (2008).

    Article  Google Scholar 

  40. B. Pettinger, P. Schambach, C. J. Villagómez, and N. Scott, Annu. Rev. Phys. Chem. 63, 379 (2012).

    Article  Google Scholar 

  41. S. Pahlow, A. März, B. Seise, K. Hartmann, I. Freitag, E. Kämmer, R. Böhme, V. Deckert, K. Weber, D. Cialla, and J. Popp, Eng. Life Sci. 12, 131 (2012).

    Article  Google Scholar 

  42. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Daniels-Race.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kanakamedala, K., Rajathadripura, M.D. et al. Electro-optical characterization of nanoGUMBOS. Electron. Mater. Lett. 10, 775–781 (2014). https://doi.org/10.1007/s13391-013-3284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3284-y

Keywords

Navigation