Skip to main content
Log in

Optimal insurance for a prudent decision maker under heterogeneous beliefs

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

In this paper we extend some of the results in the literature on optimal insurance under heterogeneous beliefs in the presence of the no-sabotage condition, by allowing the likelihood ratio function to be non-monotone. Under the assumption of prudence and a mild smoothness condition on the likelihood ratio function, we first partition the whole domain of loss into disjoint regions and then obtain an explicit parametric form for the optimal indemnity function over each piece, by resorting to the marginal indemnity function formulation. The case where there exists belief singularity between the decision maker and the insurer is also studied. As an illustration, we consider a special case of our setting in which the premium principle is a distortion premium principle. We then obtain a closed-form characterization of the optimal indemnity for the cases where premia are determined by Value-at-Risk and Tail Value-at-Risk. Our study complements the literature and provides new insights into several similar problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In Section 5 of Chi and Zhuang [18], the distortion function of Wang’s premium principle is assumed to be increasing and concave.

  2. Such budget-constrained problem is also considered, albeit in slightly different form, by Ghossoub [23, 24] without considering the no-sabotage condition.

  3. For example, in Ghossoub [23, 25], a state-verification cost is introduced to replace the no-sabotage condition, thereby preventing the DM from misreporting the true value of the incurred loss.

  4. \({\mathbb {Q}}\) is absolutely continuous with respect to \({\mathbb {P}}\) if for any Borel set A on \({\mathbb {R}}\),

    $$\begin{aligned} {\mathbb {P}}(X\in A)=0\Longrightarrow {\mathbb {Q}}(X\in A)=0. \end{aligned}$$
    (2.12)

    If \({\mathbb {Q}}\) is defined through the distortion risk measure based on \({\mathbb {P}}\), then it suffices to show the relationship (2.12) by considering \(A=(a,b]\). In this case, if \({\mathbb {P}}(a<X\le b)=S_X^{{\mathbb {P}}}(a)-S_X^{{\mathbb {P}}}(b)=0\), then

    $$\begin{aligned} {\mathbb {Q}}(a<X\le b)={\mathbb {Q}}(X\le b)-{\mathbb {Q}}(X\le a)=g\left( S_X^{{\mathbb {P}}}(a)\right) -g\left( S_X^{{\mathbb {P}}}(b)\right) =0. \end{aligned}$$
  5. Two intervals [ab] and [cd] are said to be disconnected if \(b<c\).

  6. To avoid ending up with the local optimum, we first use 1000 sets of randomized initial values for these parameters and then pick the optimized parameters that result in the largest value of objective function. The number of sets is gradually increased (e.g., 2000, 5000, etc.) until we get the stable optimized parameters.

  7. If \(t_0=-\infty\), then \(\int _{t}^{M}u'(w-x+I^*(x)-\Pi )dF_X^{{\mathbb {P}}}(x)-\lambda <0\) for any \(t\in (-\infty ,M]\).

  8. If \(\gamma =0\), then \([0,\gamma )=\varnothing\). If \(\gamma =\text {VaR}_{\alpha }(X)\), then \((\gamma ,\text {VaR}_{\alpha }(X)]=\varnothing\).

References

  1. Amarante M, Ghossoub M (2016) Optimal insurance for a minimal expected retention: the case of an ambiguity-seeking insurer. Risks 4(1):8

    Article  Google Scholar 

  2. Amarante M, Ghossoub M, Phelps E (2015) Ambiguity on the insurer’s side: the demand for insurance. J Math Econ 58:61–78

    Article  MathSciNet  MATH  Google Scholar 

  3. Arrow KJ (1974) Optimal insurance and generalized deductibles. Scand Actuar J 1974(1):1–42

    Article  MathSciNet  MATH  Google Scholar 

  4. Asimit V, Boonen TJ (2018) Insurance with multiple insurers: a game-theoretic approach. Eur J Oper Res 267(2):778–790

    Article  MathSciNet  MATH  Google Scholar 

  5. Assa H (2015) On optimal reinsurance policy with distortion risk measures and premiums. Insur Math Econ 61:70–75

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernard C, He X, Yan J-A, Zhou XY (2015) Optimal insurance design under rank-dependent expected utility. Math Finance 25(1):154–186

    Article  MathSciNet  MATH  Google Scholar 

  7. Boonen T, Ghossoub M (2019) On the existence of a representative reinsurer under heterogeneous beliefs. Insur Math Econ 88:209–225

    Article  MathSciNet  MATH  Google Scholar 

  8. Boonen TJ (2016) Optimal reinsurance with heterogeneous reference probabilities. Risks 4(3):26

    Article  MathSciNet  Google Scholar 

  9. Boonen TJ, Ghossoub M (2021) Optimal reinsurance with multiple reinsurers: distortion risk measures, distortion premium principles, and heterogeneous beliefs. Insur Math Econ 101:23–37

    Article  MathSciNet  MATH  Google Scholar 

  10. Borch K (1960) An attempt to determine the optimum amount of stop loss reinsurance. Transactions of the XVI International Congress of Actuaries 1:597–610

    Google Scholar 

  11. Carlier G, Dana R (2005) Rearrangement inequalities in non-convex insurance models. J Math Econ 41(4–5):483–503

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlier G, Dana R-A (2003) Pareto efficient insurance contracts when the insurer’s cost function is discontinuous. Econ Theory 21(4):871–893

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheung KC, Lo A (2017) Characterizations of optimal reinsurance treaties: a cost-benefit approach. Scand Actuar J 2017(1):1–28

    Article  MathSciNet  MATH  Google Scholar 

  14. Chi Y (2019) On the optimality of a straight deductible under belief heterogeneity. ASTIN Bull J IAA 49(1):243–262

    Article  MathSciNet  MATH  Google Scholar 

  15. Chi Y, Tan KS (2021) Optimal incentive-compatible insurance with background risk. ASTIN Bull J IAA 51(2):661–688

    Article  MathSciNet  MATH  Google Scholar 

  16. Chi Y, Wei W (2018) Optimum insurance contracts with background risk and higher-order risk attitudes. ASTIN Bull J IAA 48(3):1025–1047

    Article  MathSciNet  MATH  Google Scholar 

  17. Chi Y, Wei W (2020) Optimal insurance with background risk: an analysis of general dependence structures. Finance Stoch 24(4):903–937

    Article  MathSciNet  MATH  Google Scholar 

  18. Chi Y, Zhuang SC (2020) Optimal insurance with belief heterogeneity and incentive compatibility. Insur Math Econ 92:104–114

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui W, Yang J, Wu L (2013) Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles. Insur Math Econ 53(1):74–85

    Article  MathSciNet  MATH  Google Scholar 

  20. Eeckhoudt L, Kimball M (1992) Background risk, prudence, and the demand for insurance. In: Dionne G (ed) Contributions to insurance economics. Kluwer Academic publishers, Dordrecht

    Google Scholar 

  21. Eeckhoudt L, Schlesinger H (2013) Higher-order risk attitudes. In: Dionne G (ed) Handbook of insurance, 2nd edn. Springer, Berlin

    Google Scholar 

  22. Ghossoub M (2016) Optimal insurance with heterogeneous beliefs and disagreement about zero-probability events. Risks 4(3):29

    Article  Google Scholar 

  23. Ghossoub M (2017) Arrow’s theorem of the deductible with heterogeneous beliefs. North Am Actuar J 21(1):15–35

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghossoub M (2019) Budget-constrained optimal insurance with belief heterogeneity. Insur Math Econ 89:79–91

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghossoub M (2019) Budget-constrained optimal insurance without the nonnegativity constraint on indemnities. Insur Math Econ 84:22–39

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghossoub M (2020) Budget-constrained optimal retention with an upper limit on the retained loss. Scand Actuar J 2020(3):245–271

    Article  MathSciNet  MATH  Google Scholar 

  27. Gollier C (2013) The economics of optimal insurance design. In: Handbook of insurance. Springer, Berlin, pp 107–122

  28. Gollier C, Schlesinger H (1996) Arrow’s theorem on the optimality of deductibles: a stochastic dominance approach. J Opt Soc Am B 7(2):359–363

    MATH  Google Scholar 

  29. Huang R, Tzeng L, Wang C (2002) Revisiting the optimal insurance contract under deviant beliefs (unpublished work)

  30. Huberman G, Mayers D, Smith CW Jr (1983) Optimal insurance policy indemnity schedules. Bell J Econ 14(2):415–426

    Article  Google Scholar 

  31. Jiang W, Ren J, Yang C, Hong H (2019) On optimal reinsurance treaties in cooperative game under heterogeneous beliefs. Insur Math Econ 85:173–184

    Article  MathSciNet  MATH  Google Scholar 

  32. Kimball MS (1990) Precautionary saving in the small and in the large. Econometrica 58(1):53–73

    Article  MathSciNet  Google Scholar 

  33. Lo A (2017) A Neyman–Pearson perspective on optimal reinsurance with constraints. ASTIN Bull J IAA 47(2):467–499

    Article  MathSciNet  MATH  Google Scholar 

  34. Marshall JM (1992) Optimum insurance with deviant beliefs. In: Contributions to insurance economics. Springer, Berlin, pp 255–274

  35. Ravin JD (2004) Catastrophe pricing. The Institute of Actuaries of Australia, Sydney

    Google Scholar 

  36. Wang S (1996) Premium calculation by transforming the layer premium density. ASTIN Bull J IAA 26(1):71–92

    Article  Google Scholar 

  37. Wirch JL, Hardy MR (1999) A synthesis of risk measures for capital adequacy. Insur Math Econ 25(3):337–347

    Article  MATH  Google Scholar 

  38. Xu ZQ, Zhou XY, Zhuang SC (2019) Optimal insurance under rank-dependent utility and incentive compatibility. Math Finance 29(2):659–692

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhuang SC, Weng C, Tan KS, Assa H (2016) Marginal indemnification function formulation for optimal reinsurance. Insur Math Econ 67:65–76

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. Ghossoub, W.J. Jiang, and J.D. Ren acknowledge the financial support received from the Natural Sciences and Engineering Research Council of Canada (NSERC) (No. RGPIN-2020-04204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem 2.1

Let \(J(I):={\mathbb {E}}[u(w-X+I(X)-\Pi )]-\lambda {\mathbb {E}}^{{\mathbb {Q}}}[I(X)]\). Suppose that \(I^*\) is the optimal indemnity function to Problem 1b, then for any given \(I\in {\mathcal {I}}\), we have \(\epsilon I^*+(1-\epsilon )I\in {\mathcal {I}}\) for any \(\epsilon \in [0,1]\). Since

$$\begin{aligned} \begin{aligned} \frac{d^2J(\epsilon I^*+(1-\epsilon )I)}{d\epsilon ^2} \, = \, {\mathbb {E}}[u''(w-X+\epsilon I^*(X)+(1-\epsilon )I(X)-\Pi )(I^*(X)-I(X))^2] \, < \, 0, \end{aligned} \end{aligned}$$

the function \(J(\epsilon I^*+(1-\epsilon )I)\) is concave with respect to \(\epsilon\). As such, \(I^*\) is the solution to Problem 1b if and only if

$$\begin{aligned} \begin{aligned}&\frac{dJ(\epsilon I^*+(1-\epsilon )I)}{d\epsilon }\Big |_{\epsilon =1}\ge 0 \\&\quad \Longrightarrow {\mathbb {E}}[u'(w-X+I^*(X)-\Pi )(I^*(X)-I(X))]-\lambda {\mathbb {E}}^{{\mathbb {Q}}}[I^*(X)-I(X)]\ge 0\\&\quad \Longrightarrow {\mathbb {E}}[u'(w-X+I^*(X)-\Pi )I^*(X)]-\lambda {\mathbb {E}}^{{\mathbb {Q}}}[I^*(X)]\\&\quad \ge {\mathbb {E}}[u'(w-X+I^*(X)-\Pi )I(X)]-\lambda {\mathbb {E}}^{{\mathbb {Q}}}[I(X)]. \end{aligned} \end{aligned}$$

This implies that \(I^*\) is also the solution to the following problem:

$$\begin{aligned} \max _{I\in {\mathcal {I}}}\ {\mathbb {E}}[u'(w-X+I^*(X)-\Pi )I(X)]-\lambda {\mathbb {E}}^{{\mathbb {Q}}}[I(X)]. \end{aligned}$$

The objective function of the above problem could be further simplified to be

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}[u'(w-X+I^*(X)-\Pi )I(X)]-\lambda \pi (I(X)) \\&\quad =\int _{0}^{M}u'\left( w-x+I^*(x)-\Pi \right) I(x)dF_X^{{\mathbb {P}}}(x)-\lambda \int _{0}^{M}I(x)dF_X^{{\mathbb {Q}}}(x) \\&\quad = \int _{0}^{M}u'\left( w-x+I^*(x)-\Pi \right) \left\{ \int _{0}^{x}\eta (t)dt\right\} dF_X^{{\mathbb {P}}}(x)-\lambda \int _{0}^{M}\left\{ \int _{0}^{x}\eta (t)dt\right\} dF_X^{{\mathbb {Q}}}(x) \\&\quad = \int _{0}^{M}\left\{ \int _{t}^{x}u'(w-x+I^*(x)-\Pi )dF_X^{{\mathbb {P}}}(x)\right\} \eta (t)dt-\lambda \int _{0}^{M}S_X^{{\mathbb {Q}}}(t)\eta (t)dt \\&\quad = \int _{0}^{M}\left\{ \int _{t}^{x}u'(w-x+I^*(x)-\Pi )dF_X^{{\mathbb {P}}}(x)-\lambda S_X^{{\mathbb {Q}}}(t)\right\} \eta (t)dt, \end{aligned} \end{aligned}$$

where the third equation is due to the Fubini’s theorem. Therefore, to maximize the above integral we only need to maximize its integrand function at each \(t\in [0,M]\), i.e.

$$\begin{aligned} \eta ^*(t)=\left\{ \begin{aligned}&1,&\quad&L(t;\; I^*)>0, \\&\xi (t),&\quad&L(t;\; I^*)=0, \\&0,&\quad&L(t;\; I^*)<0, \end{aligned} \right. \end{aligned}$$

where \(L(t;\; I^*):=\int _{t}^{x}u'(w-x+I^*(x)-\Pi ) \, dF_X^{{\mathbb {P}}}(x)-\lambda S_X^{{\mathbb {Q}}}(t)\) and \(\xi (t)\in [0,1]\) is such that \(\eta ^*\in {\mathcal {I}}_0\). \(\square\)

1.2 Proof of Theorem 3.1

For ease of presentation, we simply write \(w-x+I^*(x)+\Pi\) as W(x). The first order derivative of \(L(t;\; I^*)\) is given by

$$\begin{aligned} L'(t;\; I^*)=-u'\left( W(t)\right) f_X(t)+\lambda f_X^{{\mathbb {Q}}}(t)=f_X(t)\, K(t), \end{aligned}$$
(A.1)

where \(K(t):=\lambda LR(t)-u'(W(t))\). The proofs of statements \((1)\sim (6)\) are given in (I)–(VI) below.

(I) Proving (1) is equivalent to proving that \({I^*}'(x)={\mathbbm {1}}_{[t_1,M]}(x)\) for some \(t_1\in [x_{m-1},M]\). We first note that \(\psi _{\lambda }'(x)> 0\) is equivalent to \(LR'(x)< 0\) over \(S_{m,1}\). Since \(\psi _{\lambda }'(x)>0\), it is impossible for \(L(t;\; I^*)=0\) over any sub-intervals within \(S_{m,1}\). We next prove through contradiction that \(L(t;\; I^*)\) cannot down-cross the t-axis anywhere in \(S_{m,1}\). In other words, there does not exist a point \(t^*\) such that

$$\begin{aligned} L(t^*;\; I^*)<0 \quad \text {and}\quad L'(t^*;\; I^*)\le 0. \end{aligned}$$
(A.2)

If such \(t^*\) exists, then from (A.1) we know that \(K(t^*)\le 0\). Moreover,

$$\begin{aligned} K'(t)=\lambda LR'(t)-u''(W(t))({I^*}'(t)-1)<0, \end{aligned}$$

then \(K(t)\le 0\) for \(t\in [t^*,M]\). This implies that \(L'(t;\; I^*)\le 0\) for \(t\in [t^*,M]\), which further implies that

$$\begin{aligned} L(t^*;\; I^*)=\int _{t^*}^{M}-L'(t;\; I^*)dt\ge 0. \end{aligned}$$

This contradicts with \(L(t^*;\; I^*)<0\). Therefore, such \(t^*\) does not exist. Let

$$\begin{aligned} {\mathcal {S}}_1:=\left\{ t\in [x_{m-1},M]: L(t;\; I^*)\ge 0\right\} ,\quad t_1:=\inf {\mathcal {S}}_1, \end{aligned}$$

with the convention \(t_1=M\) if \({\mathcal {S}}_1=\varnothing\). Since \(L(t;\; I^*)\) cannot down-cross the t-axis, \(L(t;\; I^*)<0\) on \([x_{m-1},t_1)\) and \(L(t;\; I^*)\ge 0\) on \([t_1,M]\). Applying Theorem 2.1 gives \({I^*}'(x)={\mathbbm {1}}_{[t_1,M]}(x)\).

(II) Proving (2) is equivalent to proving that \({I^*}'(x)={\mathbbm {1}}_{[x_{m-1},t_2)}(x)+I_{\lambda }'(x){\mathbbm {1}}_{[t_2,M]}(x)\) or \({I^*}'(x)=I_{\lambda }'(x){\mathbbm {1}}_{[t_2,M]}(x)\) for some \(t_2\in [x_{m-1},M]\). Note that

$$\begin{aligned} \begin{aligned} \psi _{\lambda }'(x)\in [-1,0]&\ \Longrightarrow \ \frac{\lambda LR'(x)}{u''\left( (u')^{-1}(\lambda LR(x))\right) }\in [-1,0] \\&\ \Longrightarrow \ LR'(x)\ge 0,\quad \lambda LR'(x)+u''\left( (u')^{-1}(\lambda LR(x))\right) \le 0. \end{aligned} \end{aligned}$$

We first prove that there does not exist a point \(t^*\) as described in (A.2). If such \(t^*\) exists, then

$$\begin{aligned} K(t^*)\le 0\ \Longrightarrow \ \lambda LR(t^*)\le u'(W(t^*))\ \Longrightarrow \ (u')^{-1}(\lambda LR(t^*))\ge W(t^*). \end{aligned}$$

As per Theorem 2.1, \({I^*}'(t^*)=0\). As such,

$$\begin{aligned} \begin{aligned} K'(t^*)&=\lambda LR'(t^*)-u''(W(t^*))({I^*}'(t^*)-1)\\&=\lambda LR'(t^*)+u''\left( (u')^{-1}(\lambda LR(t^*))\right) +u''(W(t^*))-u''\left( (u')^{-1}(\lambda LR(t^*))\right) \le 0, \end{aligned} \end{aligned}$$

where the last inequality holds due to \(u'''(x)\ge 0\). Thus, \(K(t)\le 0\) for \(t\in [t^*,M]\). This implies that \(L'(t;\; I^*)\le 0\) for \([t^*,M]\) and therefore \(L(t^*;\; I^*)=\int _{t^*}^{M}-L'(t;\; I^*)dt\ge 0\), which contradicts the fact that \(L(t^*;\; I^*)<0\). Therefore, such \(t^*\) does not exist.

Next, we prove that there does not exist a point \(t^{**}\) such that

$$\begin{aligned} L(t^{**};\; I^*)>0\quad \text {and}\quad L'(t^{**};\; I^*)\ge 0. \end{aligned}$$
(A.3)

If such \(t^{**}\) exists, then as per Theorem 2.1, \({I^*}'(t^{**})=1\). As such

$$\begin{aligned} K'(t^{**})=\lambda LR'(t^{**})-u''(W(t^{**}))({I^*}'(t^{**})-1)=\lambda LR'(t^{**})\ge 0. \end{aligned}$$

This implies that \(K(t)\ge 0\) for \(t\in [t^{**},M]\) and therefore \(L'(t;\; I^*)\ge 0\) over \([t^{**},M]\). This further implies that \(L(t^{**};\; I^*)=\int _{t^{**}}^{M}-L'(x;\; I^*)dx\le 0\), which contradicts with \(L(t^{**};\; I^*)>0\). Therefore, such \(t^{**}\) does not exist.

Based on the above findings, we conclude that: first, the function \(L(t;\; I^*)\) can never cross the t-axis as otherwise the point \(t^*\) or \(t^{**}\) exists; second, if there exists a point \({\tilde{t}}\) such that \(L({\tilde{t}};\; I^*)=0\), then \(L(t;\; I^*)=0\) over \([{\tilde{t}},M]\) as otherwise the point \(t^*\) or \(t^{**}\) exists. Let \({\mathcal {S}}_2:=\left\{ t\in [x_{m-1},M]: L(t;\; I^*)=0\right\}\) and

$$\begin{aligned} t_2:=\left\{ \begin{aligned}&\inf {\mathcal {S}}_2,&\quad&\text {if}\ {\mathcal {S}}_2\ne \varnothing ,\\&M,&\quad&\text {if}\ {\mathcal {S}}_2=\varnothing , \end{aligned} \right. \end{aligned}$$

then \(L(t;\; I^*)\lessgtr 0\) for \(t\in [x_{m-1},t_2)\) and \(L(t;\; I^*)=0\) for \(t\in [t_2,M]\), which leads to the result of this case under Theorem 2.1.

(III) Proving (3) is equivalent to proving that \({I^*}'(x)={\mathbbm {1}}_{[x_{m-1},t_3]}(x)\) for some \(t_3\in [x_{m-1},M]\). First note that

$$\begin{aligned} \begin{aligned} \psi _{\lambda }'(x)<-1&\ \Longrightarrow \ \frac{\lambda LR'(x)}{u''\left( (u')^{-1}(\lambda LR(x))\right) }< -1 \\&\ \Longrightarrow \ LR'(x)>0,\quad \lambda LR'(x)+u''\left( (u')^{-1}(\lambda LR(x))\right) >0, \end{aligned} \end{aligned}$$

and that \(L(t;\; I^*)=0\) cannot hold on any sub-intervals of \([x_{m-1},M]\). We next prove that there does not exist a point \(t^{**}\) as described in (A.3). If such \(t^{**}\) exists, then \(K(t^{**})\ge 0\) and

$$\begin{aligned}\begin{aligned} K'(t^{**})=&\lambda LR'(t^{**})-u''(W(t^{**}))({I^*}'(t^{**})-1) \\ =&\lambda LR'(t^{**})>0. \end{aligned} \end{aligned}$$

This implies that \(K(t)\ge 0\) for \(t\in [t^{**},M]\) and that \(L'(t;\; I^*)\ge 0\) for any \(t\in [t^{**},M]\). Therefore \(L(t;\; I^*)=\int _{t^{**}}^{M}-L'(x;\; I^*)dx\le 0\), which contradicts the fact that \(L(t^{**};\; I^*)>0\). This shows that \(L(t;\; I^*)\) cannot up-cross the t-axis.

Now let \(t_3:=\inf \left\{ t\in [x_{m-1},M]: L(t;\; I^*)<0\right\}\), we have \(L(t;\; I^*)\ge 0\) over \([x_{m-1},t_3]\) and \(L(t;\; I^*)<0\) over \((t_3,M]\), which leads to the result of this case by applying Theorem 2.1.

To prove statements (4)–(6), first note that

$$\begin{aligned} L(t;\; I^*)=\int _{t}^{M}-L'(x;\; I^*)dx=\int _{t}^{x_i}-L'(x;\; I^*)dx+L(x_i;\; I^*), \end{aligned}$$

where \(L'(x;\; I^*)=f_X(x)\, K(t)\) with \(K(t):=\lambda LR(x)-u'(W(x))\).

(IV) Proving (4) is equivalent to proving that \({I^*}'(x)={\mathbbm {1}}_{[t_4,t_5]}(x)\) where \(x_{i-1}\le t_4\le t_5\le x_i\). We first note that on \([x_{i-1},x_i]\)

$$\begin{aligned} K'(t)=\lambda LR'(t)-u''(W(t))({I^*}'(t)-1)<0, \end{aligned}$$

due to \(\psi _{\lambda }'(x)<0\). Denote by \(t_r\) the root of \(K(t)=0\), if \(t_r\in (x_{i-1},x_{i})\), then \(K(t)\ge 0\) over \([x_{i-1},t_r]\) and \(K(t)< 0\) over \((t_r,x_i]\). This implies that \(L'(t;\; I^*)\ge 0\) over \([x_{i-1},t_r]\) and \(L'(t;\; I^*)<0\) over \((t_r,x_i]\). Since \(L(t;\; I^*)=0\) cannot hold on any sub-intervals of \([x_{i-1},x_i]\), \(L(t;\; I^*)\) can cross the t-axis at most twice over \([x_{i-1},x_i]\). Let

$$\begin{aligned} t_4:=\inf \left\{ t\in [x_{i-1},x_i]: L(t;\; I^*)\ge 0\right\} \quad \text {and}\quad t_5:=\inf \left\{ t_5\in [t_4,x_i]: L(t;\; I^*)\le 0\right\} , \end{aligned}$$

then \(L(t;\; I^*)<0\) for \(t\in [x_{i-1},t_4)\), \(L(t;\; I^*)\ge 0\) for \(t\in [t_4,t_5]\) and \(L(t;\; I^*)<0\) for \(t\in (t_5,x_i]\). Applying Theorem 2.1 leads to the result of this case.

(V) Proving (5) is equivalent to proving that one of the following cases is true:

  1. (i)

    \({I^*}'(x)={\mathbbm {1}}_{[x_{i-1},t_6)\cup (t_7,x_i]}(x)+I'_{\lambda }(x){\mathbbm {1}}_{[t_6,t_7]}(x)\).

  2. (ii)

    \({I^*}'(x)={\mathbbm {1}}_{[x_{i-1},t_6)}(x)+I'_{\lambda }(x){\mathbbm {1}}_{[t_6,t_7]}(x)\).

  3. (iii)

    \({I^*}'(x)={\mathbbm {1}}_{(t_7,x_i]}(x)+I'_{\lambda }(x){\mathbbm {1}}_{[t_6,t_7]}(x)\).

  4. (iv)

    \({I^*}'(x)=I'_{\lambda }(x){\mathbbm {1}}_{[t_6,t_7]}(x)\).

Similar to the proof of (2), on \([x_{i-1},x_i]\) we first show that if there exists a point \(t'\in [x_{i-1},x_i)\) such that \(L(t';\; I^*)>0\) and \(L'(t';\; I^*)\ge 0\), then \(K'(t')\ge 0\). This implies that \(L'(t;\; I^*)\ge 0\) over \([t',x_{i}]\). This leads to \(L(t;\; I^*)>0\) over \([t',x_i]\).

If there exists a point \(t''\in [x_{i-1},x_i)\) such that \(L(t'';\; I^*)<0\) and \(L'(t'';\; I^*)\le 0\), then \(K'(t'')\le 0\). This implies that \(L'(t;\; I^*)\le 0\) over \([t'',x_{i}]\). This leads to \(L(t;\; I^*)<0\) over \([t'',x_i]\).

Next we show that \(L(t;\; I^*)=0\) can only hold on at most one sub-interval of \([x_{i-1},x_i]\). Suppose there are two disjoint sub-intervals, e.g. [ab] and [cd] where \(b<c\), of \([x_{i-1},x_i]\) such that \(L(t;\; I^*)=0\) for \(t\in [a,b]\cup [c,d]\). Then there must exist a point \(t'\in (b,c)\) such that \(L(t';\; I^*)>0\) and \(L'(t';\; I^*)\ge 0\) or a point \(t''\in (b,c)\) such that \(L(t'';\; I^*)<0\) and \(L'(t'';\; I^*)\le 0\). However, according to the earlier derivation, \(L(t;\; I^*)>0\) on \([t',x_i]\) or \(L(t;\; I^*)<0\) over \([t'',x_i]\), which contradicts with \(L(t;\; I^*)=0\) over \([c,d]\subseteq [t',x_i]\) or \([t'',x_i]\). Suppose \(L(t;\; I^*)=0\) over \([t_6,t_7]\) where \(x_{i-1}\le t_6\le t_7\le x_i\), then applying Theorem 2.1 leads to the result of this case.

(VI) Proving (6) is equivalent to proving that \({I^*}'(x)={\mathbbm {1}}_{[x_{i-1},t_8]}(x)+{\mathbbm {1}}_{[t_9,x_i]}(x)\) where \(x_{i-1}\le t_8\le t_9\le x_i\). We again first note that \(L(t;\; I^*)=0\) cannot hold on any sub-intervals of \([x_{i-1},x_i]\). Similar to the proof of (3), if there exists a point \(t'''\in [x_{i-1},x_i)\) such that \(L'(t''';\; I^*)\ge 0\), then we have \(K'(t''')>0\). This implies that \(L'(t;\; I^*)\ge 0\) over \([t''',x_i]\). Now let \({\mathcal {S}}_2:=\left\{ t\in [x_{i-1},x_i): L'(t;\; I^*)\ge 0\right\}\) and

$$\begin{aligned} {\hat{t}}:=\left\{ \begin{aligned}&\inf {\mathcal {S}}_2,&\quad&\text {if}\ {\mathcal {S}}_2\ne \varnothing ,\\&x_i,&\quad&\text {if}\ {\mathcal {S}}_2=\varnothing , \end{aligned} \right. \end{aligned}$$

then \(L'(t;\; I^*)< 0\) over \([x_{i-1},{\hat{t}})\) and \(L'(t;\; I^*)\ge 0\) over \([{\hat{t}},x_i]\). In other words, \(L(t;\; I^*)\) can cross the t-axis at most twice. Let

$$\begin{aligned} t_8:=\inf \left\{ t\in [x_{i-1},x_i]: L(t;\; I^*)\le 0\right\} \quad \text {and}\quad t_9:=\inf \left\{ t\in [t_8,x_i]: L(t;\; I^*)\ge 0\right\} , \end{aligned}$$

then \(L(t;\; I^*)\ge 0\) for \(t\in [x_{i-1},t_8]\), \(L(t;\; I^*)<0\) for \(t\in (t_8,t_9)\) and \(L(t;\; I^*)\ge 0\) for \(t\in [t_9,x_i]\). Applying Theorem 2.1 leads to the result of this case, which concludes the proof. \(\square\)

Remark 1

The assumption \(u'''(x)\ge 0\) is a sufficient condition for the monotonicity of K(t) in Cases (2) and (5), with which we are able to understand the general shape of \(L(t;\; I^*)\) on that sub-interval. Without this assumption, it would be much more complicated to discuss the monotonicity of K(t) and also the shape of \(L(t;\; I^*)\).

1.3 Proof of Proposition 4.1

First of all, since \(u'(\cdot )>0\), for any \(t\in (\text {VaR}_{\alpha }(X),M]\),

$$\begin{aligned} L(t;\; I^*)=\int _{t}^{M}u'(w-x+I^*(x)-\Pi )dF_X^{{\mathbb {P}}}(x)>0. \end{aligned}$$

Therefore, as per Theorem 2.1, \({I^*}'(x)=1\) over \((\text {VaR}_{\alpha }(X),M]\).

Second, for \(t\in [0,\text {VaR}_{\alpha }(X)]\)

$$\begin{aligned} L'(t;\; I^*)=-u'(w-t+I^*(t)-\Pi )f_X^{{\mathbb {P}}}(t)<0. \end{aligned}$$

Let \(t_0\) be the root of

$$\begin{aligned}\displaystyle \int _{t}^{M}u'(w-x+I^*(x)-\Pi )dF_X^{{\mathbb {P}}}(x)-\lambda \end{aligned}$$

over \([-\infty ,M]\)Footnote 7

and define

$$\begin{aligned} \gamma :=\min \left\{ \text {VaR}_{\alpha }(X),\max \left\{ 0,t_0\right\} \right\} , \end{aligned}$$

then \(L(t;\; I^*)>0\) over \([0,\gamma )\)Footnote 8 and \(L(t;\; I^*)<0\) over \((\gamma ,\text {VaR}_{\alpha }(X)]\). As per Theorem 2.1, \({I^*}'(x)=1\) for \(x\in [0,\gamma )\) and \({I^*}'(x)=0\) for \(x\in (\gamma ,\text {VaR}_{\alpha }(X)]\). Utilizing the basic formula \(I^*(x)=\int _{0}^{x}{I^*}'(t)dt\) leads to the result in Proposition 4.1. \(\square\)

1.4 Proof of Proposition 4.2

First, note that over \([0,\text {VaR}_{\alpha }(X)]\),

$$\begin{aligned} L'(t;\; I^*)=-u'(w-t+I^*(t)-\Pi )f_X^{{\mathbb {P}}}(t)<0. \end{aligned}$$

Therefore, \(L(t;\; I^*)\) is strictly decreasing over \([0,\text {VaR}_{\alpha }(X)]\). Let \(t_0\) be the root of \(\int _{t}^{M}u'(w-x+I^*(x)-\Pi )dF_X^{{\mathbb {P}}}-\lambda\) over \([-\infty ,M]\) and define

$$\begin{aligned} \gamma :=\min \left\{ \text {VaR}_{\alpha }(X),\max \left\{ 0,t_0\right\} \right\} , \end{aligned}$$

then \(L(t;\; I^*)>0\) for \(t\in [0,\gamma )\) and \(L(t;\; I^*)<0\) for \(t\in (\gamma ,\text {VaR}_{\alpha }(X)]\). As per Theorem 2.1, we have \({I^*}'(x)=1\) for \(x\in [0,\gamma )\) and \({I^*}'(x)=0\) for \(x\in (\gamma ,\text {VaR}_{\alpha }(X)]\). This leads to \(I^*(x)=\int _{0}^{x}{I^*}'(t)dt=\min \left\{ x,\gamma \right\}\) for \(x\in [0,\text {VaR}_{\alpha }(X)]\).

Over \((\text {VaR}_{\alpha }(X),M]\), \(L'(t;\; I^*)=-k(t)\, f_X^{{\mathbb {P}}}(t)\) where \(k(t):=u'(w-t+I^*(t)-\Pi )-\frac{\lambda }{1-\alpha }\). We next show by contradiction that there does not exist \(t_1\) and \(t_2\) such that

$$\begin{aligned}&L(t_1;\; I^*)>0,\quad \text {and}\quad L'(t_1;\; I^*)\ge 0,\\&L(t_2;\; I^*)<0,\quad \text {and}\quad L'(t_2;\; I^*)\le 0. \end{aligned}$$

If such \(t_1\) exists, then as per Theorem 2.1

$$\begin{aligned} L(t_1;\; I^*)>0\ \Longrightarrow \ {I^*}'(t_1)=1. \end{aligned}$$

Therefore,

$$\begin{aligned} k'(t_1)=u''(w-t_1+I^*(t_1)-\Pi )({I^*}'(t_1)-1)=0. \end{aligned}$$

This implies that \(L'(t;\; I^*)\ge 0\) for any \(t\in [t_1,M]\). However, note that \(L(t_1;\; I^*)=\int _{t_1}^{M}-L'(t;\; I^*)dt\le 0\), which contradicts with \(L(t_1;\; I^*)>0\). Thus, \(t_1\) does not exist. Similarly, we can prove that \(t_2\) does not exist either.

Based on the above findings, \(L(t;\; I^*)\) cannot cross the x-axis. Furthermore, if \(L(t;\; I^*)=0\) over any sub-intervals of \((\text {VaR}_{\alpha }(X),M]\), then over these sub-intervals

$$\begin{aligned} L'(t;\; I^*)=0\ \Longrightarrow \ I^*(t)=I_{\lambda }(t), \end{aligned}$$

where \(I_{\lambda }(t)=t-w+\Pi +(u')^{-1}\left( \frac{\lambda }{1-\alpha }\right)\). This implies that \({I^*}'(t)=I'_{\lambda }(t)\) when \(L(t;\; I^*)=0\).

Let

$$\begin{aligned}t_3:=\inf \left\{ t\in (\text {VaR}_{\alpha }(X),M]: L(t;\; I^*)=0\right\} ,\end{aligned}$$

then we have the following two situations:

  1. (1)

    \(L(t;\; I^*)>0\) for \(t\in (\text {VaR}_{\alpha }(X),t_3)\) and \(L(t;\; I^*)=0\) for \(t\in (t_3,M]\). This leads to \({I^*}'(x)={\mathbbm {1}}_{(\text {VaR}_{\alpha }(X),t_3)}(x)+{I_{\lambda }}'(x)\,{\mathbbm {1}}_{(t_3,M]}(x)={\mathbbm {1}}_{(\text {VaR}_{\alpha }(X),t_3)}(x)+{\mathbbm {1}}_{(t_3,M]}(x)\).

  2. (2)

    \(L(t;\; I^*)<0\) for \(t\in (\text {VaR}_{\alpha }(X),t_3)\) and \(L(t;\; I^*)=0\) for \(t\in (t_3,M]\). This leads to \({I^*}'(x)={I_{\lambda }}'(x)\,{\mathbbm {1}}_{(t_3,M]}(x)={\mathbbm {1}}_{(t_3,M]}(x)\).

Applying the basic formula \(I^*(x)=I^*(\text {VaR}_{\alpha }(X))+\int _{\text {VaR}_{\alpha }(X)}^{x}{I^*}'(t)dt\) leads to

$$\begin{aligned} I^*(x)=I^*(\text {VaR}_{\alpha }(X))+\min \left\{ (x-\text {VaR}_{\alpha })_+,\max \left\{ 0,I_{\lambda }(x){\mathbbm {1}}_{\{x>\text {VaR}_{\alpha }(X)\}}(x)\right\} \right\} \end{aligned}$$

for \(x\in (\text {VaR}_{\alpha }(X),M]\). This concludes the proof. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghossoub, M., Jiang, W. & Ren, J. Optimal insurance for a prudent decision maker under heterogeneous beliefs. Eur. Actuar. J. 13, 703–730 (2023). https://doi.org/10.1007/s13385-022-00335-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-022-00335-z

Keywords

JEL Classification

Navigation