Skip to main content
Log in

Application of machine learning methods to predict drought cost in France

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

This paper addresses the prediction of the total damage costs brought on by a drought episode under the French “Régime de Catastrophes Naturelles”. Due to the specificity of this natural disaster compensation scheme, an early prediction of the cost of a disaster is needed to improve strategic decisions. Taking advantage of the access, thanks to a partnership with the Mission Risques Naturels, to a database of natural disaster claims fed by the major French insurance companies, we combine the information of drought event claims contained in this database with meteorological and socioeconomic data to achieve a more comprehensive knowledge of the exposure. Our prediction approach relies on the comparison of different statistical models and machine learning algorithms. To improve the prediction performance, we propose an aggregation of the different models. Since the main difficulty encountered is imbalanced data as a large majority of cities are not affected by a drought event, the predictions are assessed by F1-scores and Precision and Recall curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The database is not publicly available for confidential reasons.

Code availability

The code is publicly available at :https://github.com/antoine-heranval/Paper_Application-of-machine-learning-methods-for-cost-prediction-of-drought-in-France

References

  1. Catastrophes naturelles : la facture salée des sécheresses à répétition. Tech. rep., Argus de l’Assurance. https://www.argusdelassurance.com/assurance-dommages/catastrophes-naturelles-la-facture-salee-des-secheresses-a-repetition.169969

  2. Avant de construire - prendre en compte les risques du terrain. Tech. rep., Agence Qualité Construction (2014). https://qualiteconstruction.com/publication/avant-de-construire-prendre-en-compte-les-risques-du-terrain/

  3. Etude : Changement climatique et assurance à l’horizon 2040. Tech. rep., Fédération Française de l’assurance (2015). https://www.ffa-assurance.fr/la-federation/publications/enjeux-climatiques/etude-changement-climatique-et-assurance-horizon-2040

  4. Présentation de la MRN. Tech. rep., Mission Risques Naturels (2018). https://www.mrn.asso.fr/wp-content/uploads/2018/09/presentation-mrn_v21092018-1.pdf

  5. Sécheresse géotechnique, de la connaissance de l’aléa à l’analyse de l’endommagement du bâti. Tech. rep., Mission Risques Naturels (2018). https://www.mrn.asso.fr/wp-content/uploads/2019/01/21-01-2018_rapport-mrn_secheresse-2018.pdf

  6. Lettre d’information de la Mission Risques Naturels 30, juillet 2019. Tech. rep., Mission Risques Naturels (2019). https://www.mrn.asso.fr/wp-content/uploads/2019/10/lettre-n30_vf.pdf

  7. Procédure de reconnaissance de l’état de catastrophe naturelle - Révision des critères permettant de caractériser l’intensité des épisodes de sécheresse-réhydratation des sols à l’origine de mouvements de terrain différentiels. Tech. rep., Ministère de l’interieur (2019). https://www.legifrance.gouv.fr/download/pdf/circ?id=44648

  8. Contribution de Météo-France à l’analyse de la sécheresse géotechnique à l’attention de la Commission CatNat pour l’année 2019. Tech. rep., Météo France, Direction de la Climatologie et des Services Climatiques (2020). https://meteofrance.fr/sites/meteofrance.fr/files/files/editorial/Rapport-catnat-secheresse-2020.pdf

  9. Météo-France dans le dispositif CATNAT sécheresse. Tech. rep., Météo France (2020). https://meteofrance.fr/sites/meteofrance.fr/files/files/editorial/Catnat09032022.pdf

  10. L’assurance des événements naturels en 2019. Tech. rep., Fédération Française de l’assurance (2021). https://www.mrn.asso.fr/wp-content/uploads/2021/03/2021-mrn-lassurance-des-evenements-naturels-en-2019.pdf

  11. Arnold C (2018) Le parc de logements en France au 1er janvier 2018. Tech. rep., INSEE. https://www.insee.fr/fr/statistiques/3620894

  12. Assadollahi H (2019) The impact of climatic events and drought on the shrinkage and swelling phenomenon of clayey soils interacting with constructions. Ph.D. thesis, Université de Strasbourg. https://tel.archives-ouvertes.fr/tel-02331567/file/Assadollahi_Hossein_2019_ED269.pdfs

  13. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  14. Breiman L, Friedman J, Stone CJ, Olshen RA (1984). Classification and regression trees CRC Press. https://doi.org/10.1201/9781315139470

  15. Brownlee J (2020) Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes. Cost-Sensitive Learning, Machine Learning Mastery

  16. Charpentier A, James MR, Ali H (2021) Predicting drought and subsidence risks in France. Natural Hazards and Earth System Sciences Discussions pp. 1–27

  17. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM. https://doi.org/10.1145/2939672.2939785

  18. Chinchor N, Sundheim BM (1993) Muc-5 evaluation metrics. In: Fifth Message Understanding Conference (MUC-5): Proceedings of a Conference Held in Baltimore, Maryland, August 25-27, 1993 . https://aclanthology.org/M93-1007.pdf

  19. Corti T, Muccione V, Köllner-Heck P, Bresch D, Seneviratne SI (2009) Simulating past droughts and associated building damages in France. Hydrol Earth Syst Sci 13(9):1739–1747

    Article  Google Scholar 

  20. Denuit M, Charpentier A (2005) Mathematiques de l’Assurance Non-Vie. Tome II: Tarification et Provisionnement

  21. Ecoto G, Bibaut A, Chambaz A (2021) One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters. arXiv preprint arXiv:2107.13291

  22. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. Journal of statistical software 33(1), 1 . https://pubmed.ncbi.nlm.nih.gov/20808728/

  23. Habets F, Boone A, Champeaux JL, Etchevers P, Franchistéguy L, Leblois E, Ledoux E, Le Moigne P, Martin E, Morel S, Noilhan J, Quintana Seguí P (2008) Rousset-Regimbeau F, Viennot P The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France 113, D06113. https://doi.org/10.1029/2007JD008548

  24. Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1):3–20. https://doi.org/10.1080/00031305.1975.10479105

    Article  MATH  Google Scholar 

  25. McKee TB, Doesken NJ, Kleist J, et al. (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, vol. 17, pp. 179–183. Boston . https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf

  26. Nelder JA, Wedderburn RW (1972) Generalized linear models. J Royal Stat Soc Ser A (Gen) 135(3):370–384. https://doi.org/10.2307/2344614

    Article  Google Scholar 

  27. Pritchard OG, Hallett SH, Farewell TS (2015) Probabilistic soil moisture projections to assess Great Britain’s future clay-related subsidence hazard. Climat Change 133(4):635–650. https://doi.org/10.1007/s10584-015-1486-z

    Article  Google Scholar 

  28. Rijsbergen C (1979) Information retrieval, 2nd ed. Buttersworth, London

  29. Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one 10(3):e0118432. https://doi.org/10.1371/journal.pone.0118432

    Article  Google Scholar 

  30. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Methodol) 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  MathSciNet  MATH  Google Scholar 

  31. Vidal JP, Martin E, Kitova N, Najac J, Soubeyroux JM (2012) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrol Earth Syst Sci 16(8):2935–2955. https://doi.org/10.5194/hess-16-2935-2012

    Article  Google Scholar 

  32. Vidal JP, Moisselin JM (2011) Impact du changement climatique sur les sécheresses en France. http://www.drias-climat.fr/public/shared/rapport_final_CLIMSEC.pdf

  33. Vincent M, Plat E, Le Roy S (2007) Cartographie de l’aléa retrait-gonflement et plans de prévention des risques. Revue française de géotechnique 120–121:189–200. https://doi.org/10.1051/geotech/2007120189

  34. Wright MN, Ziegler A (2015) Ranger: A fast implementation of random forests for high dimensional data in C++ and R 77(1). https://doi.org/10.18637/jss.v077.i01

  35. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Stat Soc Ser B (Stat Methodol) 67(2):301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was supported by the Mission Risques Naturels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Heranval.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heranval, A., Lopez, O. & Thomas, M. Application of machine learning methods to predict drought cost in France. Eur. Actuar. J. 13, 731–753 (2023). https://doi.org/10.1007/s13385-022-00327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-022-00327-z

Keywords

Mathematics Subject Classification

Navigation