Skip to main content
Log in

Synthesis of Plant-Derived Smoke-Mediated Silver Nanoparticles and its Stimulatory Effects on Maize Growth Under Wastewater Stress

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanomaterials have proven effective and valuable in agriculture, and metallic nanoparticles have been found to have significant biological activities. On the other hand, plant-derived smoke solution is known as a growth regulator. However, there is no literature accessible on the nanoparticles synthesis from plant-derived smoke solutions and its effect on plant growth. This study aimed to synthesize silver nanoparticles from plant smoke-derived (AgNps) and evaluate their stimulatory effect on seed germination and seedling growth of maize under wastewater (industrial effluents) stress. The concentrated aqueous solution of smoke was prepared from Cymbopogon jwarancusa in a closed chamber, followed by its loading into AgNPs by combining silver nitrate (AgNO3) and concentrated plant-derived smoke solution in a closed chamber. The developed plant smoke-loaded AgNPs were characterized for identification using maximum absorption attribute using UV–visible spectroscopy and elemental composition (EDX). The results indicated mixture exhibited a λmax of 433 nm depicting the successful formation of AgNPs. The majority of the synthesized AgNPs exhibited round-to-sphere and square-to-rectangular geometry with an average size of 31 nm. The EDX analysis demonstrated the predominant presence of Ag and Cl ions and some other trace elements; while, XRD results showed a strong peak at 38.2° indicating the nanocrystalline nature of the AgNPs. The vibrational analysis results revealed successful enclosing of smoke probably in the core of AgNPs characterized by the disappearance of smoke signature bands in AgNPs spectra. The characterized nanoparticles (5, 10, and 15 mg L−1) were then used to investigate their effect on seed germination and seedling growth of maize under wastewater treatment as compared with smoke solution (1:500), AgNO3, and control. The results showed that low-concentration of AgNPs (5 mg L−1) significantly increased the germination percentage (80%), length of shoots and roots (18 cm, 16 cm), and fresh and dry weights of root and shoot (0.6,0.45 and 0.3 g, 0.6 g) under wastewater stress (25%) as compared to smoke solution (1:500) (50%), AgNO3 (60%) and control (40%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arya, S.S.; Tanwar, N.; Lenka, S.K.: Prospects of nano- and peptide-carriers to deliver CRISPR cargos in plants to edit across and beyond central dogma. Nanotech Nol. Environ. Eng. 6, 22 (2021)

    Article  Google Scholar 

  2. Salehi, H.; Chehregani Rad, A.; Sharifan, H.; Raza, A.; Varshney, R.K. Aerially applied zinc oxide nanoparticle affects reproductive components and seed quality in fully grown bean plants (Phaseolus vulgaris L.). Front Plant Sci. 2022, 12, 1–13.

  3. Sagar, S.R.; Sangram, K.L.; David, M.C.; James, E.R.: Designer nanoparticles for plant cell culture systems, mechanism of elicitation and harnessing of specialized metabolites. BioEss. 43, 2100081 (2021)

    Article  Google Scholar 

  4. Salachna, P.; Byczyńska, A.; Zawadzińska, A.; Piechocki, R.; Mizielińska, M.J.A.: Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9, 610 (2019)

    Article  Google Scholar 

  5. Soni, A. T.; Rookes, J. E.; Arya, S. S. Chitosan nanoparticles as seed priming agents to alleviate salinity stress in rice (Oryza sativa L.) seedlings. Polysaccharide. 2023, 4, 129–141.

  6. Kandhol, N.; Aggarwal, B.; Bansal, R.; Parveen, N.; Singh, V.P.; Chauhan, D.K.; Sonah, S.; Grillo, R.; Peralta-avidya, J.; Deshmukh, R.; Tripathi, D.K.: Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. Environ. Pollu. 300, 118887 (2022)

    Article  Google Scholar 

  7. Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H.: Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 10, 8996–9031 (2020)

    Article  Google Scholar 

  8. Shehu, Z.; Danbature, W.; Adam, M.: Ag/Ni bimetallic nanoparticles: eco-friendly synthesis, characterization, and its bactericidal applications. J. Med. Sci. 1, 1–7 (2021)

    Google Scholar 

  9. Ahmed, A.; He, P.; He, P.; Wu, Y.; He, Y.; Munir, S.: Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environ. Intl. 173, 107819 (2023)

    Article  Google Scholar 

  10. Li, C.-C.; Dang, F.; Li, M.; Zhu, M.; Zhong, H.; Hintelmann, H.; Zhou, D.-M.: Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11, 699–709 (2017)

    Article  Google Scholar 

  11. Verma, A.; Bharadvaja, N.: Plant-mediated synthesis and characterization silver and copper oxide nanoparticles: antibacterial and heavy metal removal activity. J. Clust. Sci. 33, 1–16 (2022)

    Article  Google Scholar 

  12. Bhuvaneswari, T.S.; Thirugnanam, T.; Thirumurugan, V.J.A.J.o.P. Pharmacology, Phytomediated synthesis of silver nanoparticles using Cassia auriculata L: Evaluation of antibacterial and antifungal activity. Asian J. Pharm. Pharmacol. 2019, 5, 326–331.

  13. Ahmed, R.H.; Mustafa, D.E.: Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Su-dan. Int. Nano Lett. 10, 1–14 (2020)

    Article  Google Scholar 

  14. Providence, B.A.; Chinyere, A.A.; Ayi, A.A.; Charles, O.O.; Elijah, T.A.; Ayomide, H.L.: Green synthesis of silver monometallic and copper-silver bimetallic nanoparticles using Kigelia africana fruit extract and evaluation of their antimicrobial activities. Pure Appl. Chem. 13, 24–32 (2018)

    Google Scholar 

  15. Faheem Afzal, S.; Wei, X.; Wang, Q.; Liu, W.; Wang, D.; Yao, Y.; Hu, H.; Chen, X.; Huang, S.; Hou, J.; et al. Karrikin improves osmotic and salt stress tolerance via the regulation of redox homeostasis in the oil plant Sapium sebiferum. Front. Plant Sci. 2020, 11, 216.

  16. Masaki, O.: Proteomic study to understand promotive effects of plant-derived smoke on soybean (Glycine max L.) root growth under flooding stress. Plant mol. Biol. Rep. 2021, 39, 24–33.

  17. Waheed, M.S.A.; Jamil, M.; Khan, M.D.; Shakir, S.K.; Shafiq-Ur-Rehman. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress. Int. J. Mol. 2016, 20, 2–21.

  18. Antala, M.; Sytar, O.; Rastogi, A.; Brestic, M.: Potential of larrikins as novel plant growth regulators in agriculture. Plants. 9, 43 (2019)

    Article  Google Scholar 

  19. Kamran, M.; Khan, A.L.; Ali, L.; Hussain, J.; Waqas, M.; Al-Harrasi, A.; Imran, Q.M.; Kim, Y.-H.; Kang, S.-M.; Yun, B.-W.; Lee, I.-J.: Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce. Front. chem. 5, 1–8 (2017)

    Article  Google Scholar 

  20. Malook, I.; Shah, G.; Jan, M. Smoke priming regulates growth and the expression of myeloblastosis and zinc-finger genes in rice under salt stress. Arab. J Sci. Eng. 2017, 42, 2207–2215. [Google Scholar]

  21. Khatoon, A.; Rehman, S.U.; Aslam, M.M.; Jamil, M.; Komatsu, S.: Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. Int. J. Mol. Sci. 21, 7760 (2020)

    Article  Google Scholar 

  22. Sharma, P.; Bhatt, D.; Zaidi, M.; Saradhi, P.P.; Khanna, P.; Arora, S.J.A.b. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Biotechnology. 2012, 167, 2225–2233.

  23. Logeswari, P.; Silambarasan, S.; Abraham, J.: Synthesis of silver nanoparticles using plant extract and analysis of their antimicrobial property. J. Saudi Chem. Soc. 19, 311–317 (2015)

    Article  Google Scholar 

  24. Panja, S.; Chaudhuri, I.; Khanra, K.; Bhattacharyya, N.: Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfi serpentina Benth. Asian Pac. J. Trop. Dis. 6, 549–556 (2016)

    Article  Google Scholar 

  25. De Lange, J.H.; Boucher, C. Autecological studies on Audouinia capitata (Bruniaceae). Plant-derived smoke as a seed germination cue. S. Afr. J. Bot., 56, 700–703 (1990).

  26. Jawad, R.; Faisal, K.; Al-Hamdani, A.: Synthesis of silver nanoparticles. J. Eng. Appl. Sci. 9, 586–592 (2014)

    Google Scholar 

  27. Rajan, R.; Huo, P.; Chandran, K.; Manickam, B.; Dakshinamoorthi, M.; Yun, S.; Lie, B.: A review of the toxicity of silver nanoparticles against different biosystems. Chemosphere 292, 133397 (2022)

    Article  Google Scholar 

  28. Okaiyeto, K.; Hoppe, H.; Okoh, A.I.: Plant-based synthesis of silver nanoparticles using aqueous leaf extract of salvia officinalis: characterization and its anti-plasmodial activity. J. Clust. Sci. 32, 101–109 (2021)

    Article  Google Scholar 

  29. Sudha, A.; Jeyakanthan, J.; Srinivasan, V.: Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial, and cytotoxic effects. Elsevier 3, 506–515 (2017)

    Google Scholar 

  30. Shaikh, W.A.; Chakraborty, S.; Owens, G.: A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade. Appl. Nanosci. 11, 2625–2660 (2021)

    Article  Google Scholar 

  31. Wang, X.; Xie, H.; Wang, P.; Yin, H.: Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials (Basel). 16, 3097 (2023)

    Article  Google Scholar 

  32. Roy, P.; Das, B.; Mohanty, A.; Mohapatra, S.: Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl. Nanosci. 7, 843–850 (2017)

    Article  Google Scholar 

  33. Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem. 9, 1–9 (2019)

    Article  Google Scholar 

  34. Das, P.; Ghosal, K.; Jana, N.; Mukherjee, A.; Basak, P. Green synthesis and characterization of silver nanoparticles using Belladonna Mother Tincture and its efficacy as a potential antibacterial and anti-inflammatory agent. Mater. Chem. Phys., 228 (2019).

  35. Ahmad, N.; Fozia.; Jabeen, M.; Haq, Z.U.; Ahmad, I.; Wahab, A.; Islam, Z.U.; Ullah, R.; Bari, A.; Abdel-Daim, M.M.; El-Demerdash, F.M.; Khan, M.Y. Green fabrication of silver nanoparticles using Euphorbia serpens kunth aqueous extract, their characterization, and investigation of its in vitro antioxidative, antimicrobial, insecticidal, and cytotoxic activities. BioMed. Res. Int. 2022, 5562849–5562849 (2022).

  36. Hano, C.; Abbasi, BH.: Plant-based green synthesis of nanoparticles: production, characterization

  37. Ali, R.; Javaria, T.; Zainab, Z.; Sidra, C.; Shanza, B.; Rutwik, B.; Roa, S.A.K.; Fernando, B., Jr.; Chong, Z.; Hua, C.; Weijian, Z.; Rajeev, K.V.: Advances in “Omics” approaches for improving toxic metals/metalloids tolerance in plants. Front. Plant Sci. 12, 1–28 (2022)

    Google Scholar 

  38. Gupta, S.D.; Agarwal, A.; Pradhan, S.: Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 161, 624–633 (2018)

    Article  Google Scholar 

  39. Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014, 104, 302–309.

  40. Khan, S.; Akhtar, N.; Rehman, S.U.; Shujah, S.; Rha, E.S.; Jamil, M.: Biosynthesized iron oxide nanoparticles (Fe3O4 NPs) mitigate arsenic toxicity in rice seedlings. Toxics. 9, 2 (2021)

    Article  Google Scholar 

  41. Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Ajala, A.O.; Mohammed, A.K.: Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl Water Sci 10, 1–36 (2020)

    Article  Google Scholar 

  42. Rai-Kalal, P.; Tomar, R.S.; Jajoo, A. H2O2 signaling regulates seed germination in ZnO nano-primed wheat (Triticum aestivum L.) seeds for improving plant performance under drought stress. Environ. Exp. Bot., 104561 (2021).

  43. Krishnaraj, C.; Enthai Ganeshan, J.; Rajan, R.; Abirami, S.; Mohan, N.; Kalaichelvan, P. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem. 47, 651–658 (2012).

  44. Mehrian, S.K.; Heidari, R.; Rahmani, F.; Najafi, S.: Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum mill (tomato) plants. J. Clust. Sci. 27, 327–340 (2015)

    Article  Google Scholar 

  45. Nile, S.H.; Thiruvengadam, M.; Wang, Y.: Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. J. Nanobiotechnol. 20, 254 (2022)

    Article  Google Scholar 

  46. Iqbal, M.; Raja, N.; Mashwani, Z.-u.-R.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on the growth of wheat under heat stress. Iran. J. Sci. Technol. Trans. A: Sci. 2017, 43.

  47. Dykman, L.; Shchyogolev, S.: The effect of gold and silver nanoparticles on plant growth and development. Metal Nanoparticles. 115, 263–300 (2018)

    Google Scholar 

  48. Elkhatib, E.; Attia, M.G; Mahdy, A.; Mostafa, R.A. Priming with mango peels nanoparticles enhances seed growth of maize (Zea mays L.) under salt stress. Alex. Sci. Etch, 2019, 40, 767–780.

  49. Jasim, B.; Thomas, R.; Mathew, J.; Radhakrishnan, E.K. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharma. J. 2017, 25, 443–447.

  50. Ali, R.; Sidra, C.; Hajar, S.; Saghir, A.; Faisal, S.; Gérrard, E. J.; Kadambot, H. M. S.; Rajeev, K. V.: Nano‑enabled stress‑smart agriculture: Can nanotechnology deliver drought and salinity‑smart crops? J. Sustain. Agric. Environ. 2, 189–214 (2023).

  51. Ali, S.; Mehmood, A.; Khan, N.: Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J. Nanomat. 2021, 6677616 (2021)

    Article  Google Scholar 

  52. Wang, J.W.; Cunningham, F.J.; Goh, N.S.; Boozarpour, N.N.; Pham, M.; Landry, M.P.: Nanoparticles for protein delivery in planta. Curr. Opin. Plant Biol. 60, 1–16 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The University of Peshawar has been greatly acknowledged for the characterization of NPs.

Author information

Authors and Affiliations

Authors

Contributions

S.M. performed the experiment, formal analysis, planning, and prepared the original draft; M.J., was involved in conceptualization, and supervision, and helped in review and editing; I.H. and M.F., authors helped in performing the experiments; A.K. and M.Q., authors review the manuscript and provided critical feedback; N.R.K and E.S.R., the author provided critical feedback and verified the statistical methods.

Corresponding author

Correspondence to Muhammad Jamil.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, S., Ihtisham-UL-Haq, Khan, N.R. et al. Synthesis of Plant-Derived Smoke-Mediated Silver Nanoparticles and its Stimulatory Effects on Maize Growth Under Wastewater Stress. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09049-8

Keywords

Navigation