Skip to main content
Log in

Effects of Moisture on Properties of Concrete Exposed to Elevated Temperature

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concrete is often damaged on exposure to fire causing significant loss in strength. Although the subject has been extensively investigated, the physics of fire damage is still not known exactly, especially the effect of water inside concrete that can evaporate, causing internal pressure and cracking. This paper explores the influence of some practical cases of moisture states on the performance of concrete after exposure to heating. This research focusses on the effect of three moisture states, namely, dry, saturated, and moist, on the behavior of normal and high strength concretes (NSC and HSC) at high temperatures. As the moisture states may be dependent on the size of concrete specimens, two sizes of cylinders of 150 × 300 and 100 × 200 mm were used. The moisture states were differentiated in terms of unit weight, weight loss, and relative humidity inside concrete. The relative humidity was measured at different depth of concrete cylinder to establish the variation of moisture inside concrete test specimens. The exposure temperatures were: ambient, 300 °C, and 600 °C. The condition of test specimens after heating was assessed in terms of cracks, spalling, and compressive strength. Although no effect of moisture could be observed at 300 °C, significant effect of moisture was noted at 600 °C with the almost dry conditions being the most favorable in minimizing the strength loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abbas, H.; Al-Salloum, Y.A.; Elsanadedy, H.M.; Almusallam, T.H.: ANN models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf. J. 106, 13–28 (2019)

    Article  Google Scholar 

  2. Ahmed, G.N.; Hurst, J.P.: Modeling pore pressure, moisture, and temperature in high-strength concrete columns exposed to fire. Fire Technol. 35, 232–262 (1999)

    Article  Google Scholar 

  3. Ichikawa, Y. (2000). Prediction of pore pressures, heat and moisture transfer leading to spalling of concrete during fire. Ph.D. Thesis

  4. Ichikawa, Y.; England, G.L.: Prediction of moisture migration and pore pressure build-up in concrete at high temperatures. Nucl. Eng. Des. 228(1–3), 245–259 (2004)

    Article  Google Scholar 

  5. Li, Y.; Yang, E.H.; Zhou, A.; Liu, T.: Pore pressure build-up and explosive spalling in concrete at elevated temperature: a review. Constr. Build. Mater. 284, 122818 (2021)

    Article  Google Scholar 

  6. Amran, M.; Huang, S.S.; Onaizi, A.M.; Murali, G.; Abdelgader, H.S.: Fire spalling behavior of high-strength concrete: a critical review. Constr. Build. Mater. 341, 127902 (2022)

    Article  Google Scholar 

  7. Hedayati, M.; Sofi, M.; Mendis, P.; Ngo, T.: A comprehensive review of spalling and fire performance of concrete members. Electron. J. Struct. Eng. 15, 8–34 (2015)

    Article  Google Scholar 

  8. Kannangara, T.; Joseph, P.; Fragomeni, S.; Guerrieri, M.: Existing theories of concrete spalling and test methods relating to moisture migration patterns upon exposure to elevated temperatures–a review. Case Stud Construct Mater 16, e01111 (2022)

    Article  Google Scholar 

  9. Schneider, U.: Concrete at high temperatures—a general review. Fire Saf. J. 13(1), 55–68 (1988)

    Article  MathSciNet  Google Scholar 

  10. Malik, M.; Bhattacharyya, S.K.; Barai, S.V.: Temperature, porosity and strength relationship for fire affected concrete. Mater. Struct. 55(2), 72 (2022)

    Article  Google Scholar 

  11. Zawadowska, A.; Giuliani, L.; Hertz, K.D.: Experimental study on the mechanical properties of fire exposed concrete. Saf. Sci. 142, 105357 (2021)

    Article  Google Scholar 

  12. Wang, X.; Zhu, P.; Yu, S.; Liu, H.; Dong, Y.; Xu, X.: Effect of moisture content on tunnel fire resistance of self-compacting concrete coated with aerogel mortar. Mag. Concr. Res. 73(20), 1071–1080 (2021)

    Article  Google Scholar 

  13. Wróblewska, J.; Kowalski, R.: Assessing concrete strength in fire-damaged structures. Constr. Build. Mater. 254, 119122 (2020)

    Article  Google Scholar 

  14. Khoury, G.A.: Effect of fire on concrete and concrete structures. Prog. Struct. Mat. Eng. 2(4), 429–447 (2000)

    Article  Google Scholar 

  15. Chan, S.Y.N.; Peng, G.F.; Anson, M.: Fire behavior of high-performance concrete made with silica fume at various moisture contents. Mater. J. 96(3), 405–409 (1999)

    Google Scholar 

  16. Shen, J.; Xu, Q.: Effect of elevated temperatures on compressive strength of concrete. Constr. Build. Mater. 229, 116846 (2019)

    Article  Google Scholar 

  17. Li, P.; Liu, J.; Duan, S.; Huang, R.: Variation pattern of the compressive strength of concrete under combined heat and moisture conditions. Materials 16(4), 1548 (2023)

    Article  Google Scholar 

  18. Kodur, V.: Properties of concrete at elevated temperatures. International Scholarly Research Notices, 2014 (2014)

  19. Ko, J.; Ryu, D.; Noguchi, T.: The spalling mechanism of high-strength concrete under fire. Mag. Concr. Res. 63(5), 357–370 (2011)

    Article  Google Scholar 

  20. Van der Heijden, G.H.A.; Pel, L.; Adan, O.C.G.: Fire spalling of concrete, as studied by NMR. Cem. Concr. Res. 42(2), 265–271 (2012)

    Article  Google Scholar 

  21. Van Der Heijden, G.H.A.; Van Bijnen, R.M.W.; Pel, L.; Huinink, H.P.: Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling. Cem. Concr. Res. 37(6), 894–901 (2007)

    Article  Google Scholar 

  22. Iwama, K.; Kato, Y.; Baba, S.; Higuchi, K.; Maekawa, K.: Accelerated moisture transport through local weakness of high-strength concrete exposed to high temperature. J. Adv. Concr. Technol. 19(2), 106–117 (2021)

    Article  Google Scholar 

  23. Shen, L.; Monte, F.L.; Di Luzio, G.; Cusatis, G.; Li, W.; Felicetti, R.; Ren, Q.: On the moisture migration of concrete subject to high temperature with different heating rates. Cement Concr. Res. 146, 106492 (2021)

    Article  Google Scholar 

  24. Eurocode 2: EN 1992–1–2 (2010). Design of Reinforced and Prestressed Concrete Structures, Part 1–2: General Rules–Structural Fire Design, European Committee for Standardization.

  25. ASTM F2170–19 (2019). Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes. ASTM International, West Conshohocken, PA, 2019.

  26. ASTM C39/C39M: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, 2017 (2018)

  27. Preston, F.W.; White, H.E.: Observations on spalling. J. Am. Ceram. Soc. 17(1–12), 137–144 (1934)

    Article  Google Scholar 

  28. Breunese, A.J., & Fellinger, J.H.H.: Spalling of Concrete–An Overview of Ongoing Research in the Netherlands. In Proceedings of the Third International Workshop: Structures in Fire, Ottawa, Canada (pp. 249–258) (2004)

  29. Jansson, R.; Boström, L.: The influence of pressure in the pore system on fire spalling of concrete. Fire Technol. 46(1), 217 (2010)

    Article  Google Scholar 

  30. Naus, D.J.; Graves, H.L., III.: A review of the effects of elevated temperature on concrete materials and structures. Int. Conf. Nuclear Eng. 42428, 615–624 (2006)

    Google Scholar 

  31. Wu, G.; Teng, N.G.; Wang, Y.: Physical and mechanical characteristics of limestone after high temperature. Chin. J. Geotechn. Eng. 33(2), 259–264 (2011)

    Google Scholar 

  32. Khan, M.S.; Abbas, H.: Performance of concrete subjected to elevated temperature. Eur. J. Environ. Civ. Eng. 20(5), 532–543 (2016)

    Article  Google Scholar 

  33. Abadel, A.; Elsanadedy, H.; Almusallam, T.; Alaskar, A.; Abbas, H.; Al-Salloum, Y.: Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes. Eur. J. Environ. Civ. Eng. 26(14), 6746–6765 (2022)

    Article  Google Scholar 

  34. Dougill, J.W.: Modes of failure of concrete panels exposed to high temperatures. Mag. Concr. Res. 24(79), 71–76 (1972)

    Article  Google Scholar 

  35. Khan, M.S.; Abbas, H.: Effect of elevated temperature on the behavior of high volume fly ash concrete. KSCE J. Civ. Eng. 19, 1825–1831 (2015)

    Article  Google Scholar 

  36. Khan, M.S.; Prasad, J.; Abbas, H.: Effect of high temperature on high-volume fly ash concrete. Arab. J. Sci. Eng. 38, 1369–1378 (2013)

    Article  Google Scholar 

  37. Schneider, U.; Diederichs, U.; Ehm, C.: Effect of temperature on steel and concrete for PCRV’s. Nucl. Eng. Des. 67(2), 245–258 (1982)

    Article  Google Scholar 

  38. Jansson, R., & Boström, L. (2009, September). Fire spalling-the moisture effect. In 1st International workshop on concrete fire spalling due to fire exposure, MFPA Institute, Leipzig, Germany, September 3–5, 2009, pp 120–129.

  39. Maier, M.; Zeiml, M.; Lackner, R.: On the effect of pore-space properties and water saturation on explosive spalling of fire-loaded concrete. Constr. Build. Mater. 231, 117150 (2020)

    Article  Google Scholar 

  40. Kirchhof, L.D.; Lima, R.C.A.D.; Santos Neto, A.B.D.; Quispe, A.C.; Silva Filho, L.C.P.D.: Effect of moisture content on the behavior of high strength concrete at high temperatures. Matéria (Rio de Janeiro) 25, 898 (2020)

    Article  Google Scholar 

  41. Bentz, D.P.: Fibers, percolation, and spalling of high-performance concrete. Mater. J. 97(3), 351–359 (2000)

    Google Scholar 

  42. Lankard, D.R.; Birkimer, D.L.; Fondriest, F.F.; Snyder, M.J.: Effects of moisture content on the structural properties of portland cement concrete exposed to temperatures up to 500F. Spec. Publ. 25, 59–102 (1971)

    Google Scholar 

  43. Noumowe, A.N.; Clastres, P.; Debicki, G.; Costaz, J.L.: Transient heating effect on high strength concrete. Nucl. Eng. Des. 166(1), 99–108 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-2213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Al-Salloum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, H., Abadel, A., Alaskar, A. et al. Effects of Moisture on Properties of Concrete Exposed to Elevated Temperature. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09012-7

Keywords

Navigation