Skip to main content
Log in

Mechanical Properties and Microstructure of Cellulose Fiber- and Synthetic Fiber-Reinforced High-Strength Concrete

  • Technical Note-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of cellulose fiber (CF) as a natural waste, glass fiber (GF), and polypropylene fiber (PPF) on the mechanical properties and microstructure of high-strength concrete (HSC). The analysis of the results focused on two main parameters: fiber type and fiber proportion. The study revealed that the proportion of the greatest improvement in compressive strength was 0.5% for GF, CF, and PPF, resulting in increases of 14.46%, 4.62%, and 3.43%, respectively. In terms of the splitting tensile strength, the proportion resulting in the greatest improvement was 1% for GF, while 0.5% for CF and PPF led to increases of 26.92%, 15.38%, and 11.54%, respectively. The proportion with the greatest improvement in flexural strength was 1% for GF and CF, showing increases of 29.41% and 9.8%, respectively. Additionally, a proportion of 0.5% PPF resulted in an 11.76% increase in flexural strength. For the density proportions of GF, CF, and PPF at 1%, the density was greater than 0.5%, leading to an inverse relationship with water absorption as density increased and water absorption decreased. SEM examination of the microstructure clearly revealed strong bonding between the GF and the cement matrix, while the CF displayed bonding and hydration products on its surface. PPF was observed to be cemented within the matrix, with microcracks identified in certain areas. These findings suggest that when utilized in appropriate proportions, all three types of fibers can serve as effective reinforcing materials, enhancing and refining the mechanical properties of HSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Alanazi, H.; Elalaoui, O.; Adamu, M.; Alaswad, S.O.; Ibrahim, Y.E.; Abadel, A.A.; Al Fuhaid, A.F.: Mechanical and microstructural properties of ultra-high-performance concrete with lightweight aggregates. Buildings 12(11), 1783 (2022). https://doi.org/10.3390/buildings12111783

    Article  Google Scholar 

  2. Meng, W.; Khayat, K.: Effects of saturated lightweight sand content on key characteristics of ultrahigh-performance concrete. Cem. Concr. Res. 101, 46–54 (2017). https://doi.org/10.1016/j.cemconres.2017.08.018

    Article  Google Scholar 

  3. Bentz, D.P.; Lura, P.; Roberts, J.W.: Mixture proportioning for internal curing. Concr. Int. 27(2), 35–40 (2005)

    Google Scholar 

  4. Yang, L.; Ma, X.; Hu, X.; Liu, J.; Wu, Z.; Shi, C.: Production of lightweight aggregates from bauxite tailings for the internal curing of high strength mortars. Constr. Build. Mater. 341, 127800 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127800

    Article  Google Scholar 

  5. Danish, A.; Mosaberpanah, M.A.; Salim, M.U.: Robust evaluation of superabsorbent polymers as an internal curing agent in cementitious composites. J. Mater. Sci. 56, 136–172 (2021)

    Article  Google Scholar 

  6. Prasittisopin, L.; Trejo, D.: Characterization of chemical treatment method for rice husk ash cementing materials. Spec. Publ. 294, 1–14 (2013)

    Google Scholar 

  7. Song, H.; Liu, J.; He, K.; Ahmad, W.: A comprehensive overview of jute fiber reinforced cementitious composites. Case Stud. Constr. Mater. 15, e00724 (2021). https://doi.org/10.1016/j.cscm.2021.e00724

    Article  Google Scholar 

  8. Nambiar, R.A.; Haridharan, M.K.: Mechanical and durability study of high performance concrete with addition of natural fiber (jute). Mater. Today Proc. 46, 4941–4947 (2021). https://doi.org/10.1016/j.matpr.2020.10.339

    Article  Google Scholar 

  9. Ahmad, J.; Arbili, M.M.; Majdi, A.; Althoey, F.; Farouk Deifalla, A.; Rahmawati, C.: Performance of concrete reinforced with jute fibers (natural fibers): a review. J. Eng. Fibers Fabr. 17, 15589250221121872 (2022). https://doi.org/10.1177/155892502211218

    Article  Google Scholar 

  10. Jamshaid, H.; Mishra, R.K.; Raza, A.; Hussain, U.; Rahman, M.L.; Nazari, S.; Choteborsky, R.: Natural cellulosic fiber reinforced concrete: influence of fiber type and loading percentage on mechanical and water absorption performance. Materials 15(3), 874 (2022). https://doi.org/10.3390/ma15030874

    Article  Google Scholar 

  11. Kesikidou, F.; Stefanidou, M.: Natural fiber-reinforced mortars. J. Build. Eng. 25, 100786 (2019). https://doi.org/10.1016/j.jobe.2019.100786

    Article  Google Scholar 

  12. Nayak, J.R.; Bochen, J.; Gołaszewska, M.: Experimental studies on the effect of natural and synthetic fibers on properties of fresh and hardened mortar. Constr. Build. Mater. 347, 128550 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128550

    Article  Google Scholar 

  13. El Messiry, M.: Natural fiber textile composite engineering. CRC Press (2017)

    Book  Google Scholar 

  14. Elsaid, A.; Dawood, M.; Seracino, R.; Bobko, C.: Mechanical properties of kenaf fiber reinforced concrete. Constr. Build. Mater. 25(4), 1991–2001 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.052

    Article  Google Scholar 

  15. Choi, Y.C.: Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites. Case Stud. Constr. Mater. 17, e01690 (2022). https://doi.org/10.1016/j.cscm.2022.e01690

    Article  Google Scholar 

  16. Kawashima, S.; Shah, S.P.: Early-age autogenous and drying shrinkage behavior of cellulose fiber-reinforced cementitious materials. Cement Concr. Compos. 33(2), 201–208 (2011). https://doi.org/10.1016/j.cemconcomp.2010.10.018

    Article  Google Scholar 

  17. Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D.: Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr. Build. Mater. 79, 115–128 (2015). https://doi.org/10.1016/j.conbuildmat.2015.01.035

    Article  Google Scholar 

  18. Singh, H.; Gupta, R.: Influence of cellulose fiber addition on self-healing and water permeability of concrete. Case Stud. Constr. Mater. 12, e00324 (2020). https://doi.org/10.1016/j.cscm.2019.e00324

    Article  Google Scholar 

  19. Korany, A.M.; Ahmed, A.E.; Abd El-Aziz, M.A.: The effect of steel and polypropylene fibers on properties of high strength concrete. Int. J. Eng. Res. Technol. IJERT. 6, 2278–3181 (2017)

    Google Scholar 

  20. Sadrmomtazi, A.; Tahmouresi, B.; Saradar, A.: Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr. Build. Mater. 162, 321–333 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.159

    Article  Google Scholar 

  21. Blazy, J.; Blazy, R.: Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Stud. Constr. Mater. 14, e00549 (2021). https://doi.org/10.1016/j.cscm.2021.e00549

    Article  Google Scholar 

  22. Adetukasi, A.O.; Fadugba, O.G.; Adebakin, I.H.; Omokungbe, O.: Strength characteristics of fiber-reinforced concrete containing nanosilica. Mater. Today Proc. 38, 584–589 (2021). https://doi.org/10.1016/j.matpr.2020.03.123

    Article  Google Scholar 

  23. Liu, J.; Jia, Y.; Wang, J.: Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete. Fibers Polym. 20, 1900–1908 (2019)

    Article  Google Scholar 

  24. Abousnina, R.; Premasiri, S.; Anise, V.; Lokuge, W.; Vimonsatit, V.; Ferdous, W.; Alajarmeh, O.: Mechanical properties of macro polypropylene fiber-reinforced concrete. Polymers 13(23), 4112 (2021). https://doi.org/10.3390/polym13234112

    Article  Google Scholar 

  25. Zhang, P.; Li, Q.F.: Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos. B Eng. 45(1), 1587–1594 (2013). https://doi.org/10.1016/j.compositesb.2012.10.006

    Article  Google Scholar 

  26. Tawfik, M.; El-said, A.; Deifalla, A.; Awad, A.: Mechanical properties of hybrid steel-polypropylene fiber reinforced high strength concrete exposed to various temperatures. Fibers 10(6), 53 (2022). https://doi.org/10.3390/fib10060053

    Article  Google Scholar 

  27. Yuan, Z.; Jia, Y.: Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: an experimental study. Constr. Build. Mater. 266, 121048 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121048

    Article  Google Scholar 

  28. Fang, Y.; Chen, B.; Oderji, S.Y.: Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Constr. Build. Mater. 188, 729–736 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.153

    Article  Google Scholar 

  29. Khan, M.; Ali, M.: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Constr. Build. Mater. 125, 800–808 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.111

    Article  Google Scholar 

  30. Iskender, M.; Karasu, B.: Glass fiber reinforced concrete (GFRC). El-Cezerî Fen ve Mühendislik Dergisi 5(1), 136–162 (2018)

    Article  Google Scholar 

  31. Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H.: Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study. Constr. Build. Mater. 100, 218–224 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.006

    Article  Google Scholar 

  32. El-Sayed, T.A.: Flexural behavior of RC beams containing recycled industrial wastes as steel fibers. Constr. Build. Mater. 212, 27–38 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.311

    Article  Google Scholar 

  33. El-Sayed, T. A., & Shaheen, Y. B.: Flexural performance of recycled wheat straw ash-based geopolymer RC beams and containing recycled steel fiber. In: Structures (Vol. 28, pp. 1713–1728). Elsevier (2020). https://doi.org/10.1016/j.istruc.2020.10.013

  34. Ghareeb, K.S.; Ahmed, H.E.; El-Affandy, T.H.; Deifalla, A.F.; El-Sayed, T.A.: The novelty of using glass powder and lime powder for producing UHPSCC. Buildings 12(5), 684 (2022). https://doi.org/10.3390/buildings12050684

    Article  Google Scholar 

  35. American society for testing materials. Committee C-1 on cement.: Standard Performance specification for hydraulic cement. ASTM International (2003)

  36. Standard, A. S. T. M.: C494/C494M-17 Standard specification for chemical admixtures for concrete. ASTM International, West Conshohocken, PA (2017)

  37. American society for testing and materials.: ASTM C 618-standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken: ASTM (2020)

  38. Gwon, S.; Choi, Y.C.; Shin, M.: Internal curing of cement composites using kenaf cellulose microfibers. J. Build. Eng. 47, 103867 (2022). https://doi.org/10.1016/j.jobe.2021.103867

    Article  Google Scholar 

  39. Mayr, M.; Eckhart, R.; Winter, H.; Bauer, W.: This is a novel approach for determining the contribution of the fiber and fines fractions to the water retention value (WRV) of chemical and mechanical pulps. Cellulose 24, 3029–3036 (2017)

    Article  Google Scholar 

  40. Kerby, J.: Internal curing using lightweight fine aggregate (2013). Civil Engineering Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/cveguht/3

  41. ACI committee.: Guide for selecting proportions for high strength concrete using portland cement and other cementitious materials. American Concrete Institute (2008)

  42. Astm, C 143 Standard test method for slump of hydraulic cement concrete. ASTM International (2003). https://doi.org/10.1016/j.conbuildmat.2015.07.143

  43. ASTM standard C642–13.: Standard test method for density, absorption, and voids in hardened concrete (2010)

  44. ASTM international committee C09 on concrete and concrete aggregates.: Standard test method for compressive strength of cylindrical concrete specimens. ASTM international (2014)

  45. ASTM international committee C09 on concrete and concrete aggregates.: Standard test method for splitting tensile strength of cylindrical concrete specimens1. ASTM international (2019)

  46. ASTM. ASTM C78‐standard test method for flexural strength of concrete (using simple beam with) (2002)

  47. ASTM C1723–16 Standard guide for examination of hardened concrete using scanning electron microscopy (2016)

  48. Bahmani, H.; Mostofinejad, D.: Microstructure of ultrahigh-performance concrete (UHPC)—a review study. J. Build. Eng. 50, 104118 (2022). https://doi.org/10.1016/j.jobe.2022.104118

    Article  Google Scholar 

  49. Zhou, X.; Saini, H.; Kastiukas, G.: Engineering properties of treated natural hemp fiber-reinforced concrete. Front. Built Environ. 3, 33 (2017). https://doi.org/10.3389/fbuil.2017.00033

    Article  Google Scholar 

  50. Tonoli, G.H.D.; Rodrigues Filho, U.P.; Savastano, H., Jr.; Bras, J.; Belgacem, M.N.; Lahr, F.R.: Cellulose modified fibers in cement based composites. Compos. A Appl. Sci. Manuf. 40(12), 2046–2053 (2009). https://doi.org/10.1016/j.compositesa.2009.09.016

    Article  Google Scholar 

  51. Mohr, B.J.; Biernacki, J.J.; Kurtis, K.E.: Supplementary cementitious materials for mitigating degradation of kraft pulp fiber–cement composites. Cem. Concr. Res. 37(11), 1531–1543 (2007). https://doi.org/10.1016/j.cemconres.2007.08.001

    Article  Google Scholar 

  52. Monazami, M.; Gupta, R.: Influence of polypropylene, carbon and hybrid coated fiber on the interfacial microstructure development of cementitious composites. Fibers 9(11), 65 (2021). https://doi.org/10.3390/fib9110065

    Article  Google Scholar 

  53. Zhang, Y.; Lei, P.; Wang, L.; Yang, J.: Effects of strain rate and fiber content on the dynamic mechanical properties of sisal fiber cement-based composites. J. Renew. Mater. 11(1), 1 (2023). https://doi.org/10.32604/jrm.2022.022659

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Faculty of Engineering Research Fund, Thammasat University and this research project was also supported by the Thailand Science Research and Innovation Fundamental Fund fiscal year 2024, Thammasat University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.P. and T.C.; methodology, S.P. and T.C.; validation, S.P., T.C. and K.S.; formal analysis, S.P.; investigation, K.S. and P.L.; writing—original draft preparation, S.P. and T.C.; writing—review and editing, K.S. and P.L.; supervision, T.C. and P.L.; project administration, T.C. and K.S.; funding acquisition, S.P., T.C., and K.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chanachai Thongchom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangkeaw, P., Thongchom, C., Keawsawasvong, S. et al. Mechanical Properties and Microstructure of Cellulose Fiber- and Synthetic Fiber-Reinforced High-Strength Concrete. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08982-y

Keywords

Navigation