Skip to main content
Log in

Photovoltaic-Based Dual Output DC–DC Converter Using Gravitational Search Algorithm-Tuned PI and Sliding Mode Controllers

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a dual-output DC–DC power conversion system based on Photovoltaic (PV) technology. PV panels are connected to a series compensated Buck-Boost Converter (SCBBC) to harvest solar energy, while a sliding mode controller (SMC) ensures maximum power point tracking (MPPT). During the intermediate phase, a synchronized Buck-Boost Converter (SBBC) topology is used to ensure effective charging and discharging of batteries. Additionally, a PI-SMC hybrid control strategy is applied at the back end to the Super Lift Luo Converter (SLLC) to maintain the load voltage at a desired value. A Gravitational Search Algorithm (GSA)-based PI controller controls the input current, while the output voltage is controlled by the outer loop (SMC). We use a single-loop SMC approach to validate the performance of the proposed dual-loop control scheme. According to the presented results, the dual-loop control scheme demonstrated higher dynamic performance in controlling input current and output voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abbasian, S.; Farsijani, M.: A single-switch high step-up zero current switching dc-dc converter based on three-winding coupled inductor and voltage multiplier cells with quasi resonant operation. Int. J. Circuit Theory Appl. 50(12), 4419–4433 (2022)

    Article  Google Scholar 

  2. Amjadi, Z.; Williamson, S.S.: Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Trans. Industr. Electron. 57(2), 608–616 (2010)

    Article  Google Scholar 

  3. Wu, H.; Lu, J.; Shi, W., et al.: Nonisolated bidirectional dc-dc converters with negative-coupled inductor. IEEE Trans. Power Electron. 27(5), 2231–2235 (2012)

    Article  Google Scholar 

  4. Lulhe, A. M.; Date, T. N.: A technology review paper for drives used in electrical vehicle (ev) & hybrid electrical vehicles (hev). In: 2015 International Conference on Control Instrumentation Communication and Computational Technologies, ICCICCT 2015, pp. 632–636, May 2016

  5. Choubey, A.; Lopes, L. A. C.: A tri-state 4-switch bi-directional converter for interfacing supercapacitors to dc micro-grids. In: 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2017, Jul. 2017

  6. Bairabathina, S.; Balamurugan, S.: Review on non-isolated multi-input step-up converters for grid-independent hybrid electric vehicles. Int. J. Hydrogen Energy 45(41), 21687–21713 (2020)

    Article  Google Scholar 

  7. Bughneda, A.; Salem, M.; Alhuyi Nazari, M., et al.: Resonant power converters for renewable energy applications: a comprehensive review. Front. Energy Res. 10, 185 (2022)

    Article  Google Scholar 

  8. Litrán, S.P.; Durán, E.; Semião, J., et al.: Multiple-output dc-dc converters: applications and solutions. Electronics 11(8), 1258 (2022)

    Article  Google Scholar 

  9. Haralambous, M.; Panayiotou, C.: Wide-bandgap semiconductors Gallium Nitride, GaN-Silicon Carbide, SiC. WIDE-BANDGAP SEMICONDUCTORS (2022)

  10. Guo, L.: Implementation of digital PID controllers for DC-DC converters using digital signal processors. In 2007 IEEE International Conference on Electro/Information Technology (pp. 306–311). IEEE (2007)

  11. Affam, A.; Buswig, Y.M.; Othman, A.-K.; Julai, N.B.; Qays, O.: A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems. Renew. Sustain. Energy Rev. 135, 1364–2321 (2021). https://doi.org/10.1016/j.rser.2020.110186

    Article  Google Scholar 

  12. Maroti, P.K.; Padmanaban, S.; Bhaskar, M.S.; Ramachandaramurthy, V.K.; Blaabjerg, F.: The state-of-the-art of power electronics converters configurations in electric vehicle technologies. Power Electron. Dev. Components. 1, 100001 (2022)

    Article  Google Scholar 

  13. Collin, R.; Miao, Y.; Yokochi, A., et al.: Advanced electric vehicle fastcharging technologies. Energies 12(10), 1839 (2019)

    Article  Google Scholar 

  14. Lipu, M.S.H.; Miah, M.S.; Ansari, S., et al.: Power electronics converter technology integrated energy storage management in electric vehicles: emerging trends, analytical assessment and future research opportunities. Electronics 11(4), 562 (2022)

    Article  Google Scholar 

  15. Safayatullah, M.; Elrais, M.T.; Ghosh, S.; Rezaii, R.; Batarseh, I.: A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access 10, 40753–40793 (2022). https://doi.org/10.1109/ACCESS.2022.3166935

    Article  Google Scholar 

  16. Saravanan, S.; Ramesh Babu, N.: A modified high step-up non-isolated DC-DC converter for PV application. J. Appl. Res. Technol. 15(3), 242–249 (2017)

    Article  Google Scholar 

  17. Athikkal, S.: A three input DC-DC converter for hybrid energy application. Int J Electr Eng Technol 11(4) (2020)

  18. Premkumar, M.; Kumar, C.; Sowmya, R.: Analysis and implementation of high-performance DC-DC step-up converter for multilevel boost structure. Front. Energy Res. 7, 149 (2019)

    Article  Google Scholar 

  19. Andrade, M.; Costa, V.: DC-DC buck converter with reduced impact. Procedia Technol. 17, 791–798 (2014)

    Article  Google Scholar 

  20. Liu, Z.; Du, J.; Yu, B.: Design method of double-boost DC/DC converter with high voltage gain for electric vehicles. World Electric Veh J 11(4), 64 (2020)

    Article  Google Scholar 

  21. Selvakumar, K.; Palanisamy, R.; Kannan, M.; Selvarajan, S.; Selim, A.; Kotb, H.; Bajaj, M.; Kamel, S.: Cone-structured seven-level boost inverter topology for power quality improvising using online monitoring controller scheme for DSTATCOM application. Front. Energy Res. (2022). https://doi.org/10.3389/fenrg.2022.1026240

    Article  Google Scholar 

  22. Mohammadnia, A.; Rezania, A.: Compatibility assessment of TEGs arrangement coupled with DC/DC converter to harvest electricity from low-temperature heat sources. Energy Conv Manag X 18, 100356 (2023). https://doi.org/10.1016/j.ecmx.2023.100356

    Article  Google Scholar 

  23. Luo, F.L.: Luo-converters, a series of new DC-DC step-up (boost) conversion circuits. In Proceedings of Second International Conference on Power Electronics and Drive Systems (Vol. 2, pp. 882–888). IEEE (1997) .

  24. Pansare, C.; Sharma, S.K.; Jain, C.; Saxena, R.: Analysis of a modified positive output Luo converter and its application to solar PV system. In 2017 IEEE Industry Applications Society Annual Meeting (pp. 1–6). IEEE (2017)

  25. Mohammed, A.T.; Alshamaa, N.K.: Design and implementation of a modified luo converter with higher–voltage ratio gain. In IOP Conference Series: Materials Science and Engineering (Vol. 881, No. 1, p. 012124). IOP Publishing (2020)

  26. Me, M.M.C.; Babu, M.R.; Sujatha, M.R.: Design and simulation of LUO converter topologies for photovoltaic applications. Int. J. Appl. Eng. Res. 9(23), 21553–21560 (2014)

    Google Scholar 

  27. Sagar, J.V.; Srinu, I.: Luo converter for low-power applications using a super capacitor. Int. J. Res. Anal. Rev. 5, 1269–2348 (2018)

    Google Scholar 

  28. Faridpak, B.; Farrokhifar, M.; Nasiri, M.; Alahyari, A.; Sadoogi, N.: Developing a super-lift luo-converter with integration of buck converters for electric vehicle applications. CSEE J. Power Energy Syst. 7(4), 811–820 (2020)

    Google Scholar 

  29. Chen, G.P.; Liu, Y.W.; Qing, X.L.; Ma, M.Y.; Lin, Z.Y.: Principle and topology derivation of single-inductor multi-input multi-output DC-DC converters. IEEE Trans. Industr. Electron. 68(1), 25–36 (2021)

    Article  Google Scholar 

  30. Sankara, S.K.; Ramaesh, K.K.: ‘Design of single input dual output DC–DC converter for electric vehicle application. Math. Prob. Eng. (2023). https://doi.org/10.1155/2023/3536608

    Article  Google Scholar 

  31. Karuvelam, K. K. S, P. S.; Ramapalaniappan, L.; Prakash, S.; Karthi, T.; Bright, E. I.: High gain super lift luo converter with PSO optimized PI controller based EV application. In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1–6, doi: https://doi.org/10.1109/ICCCNT56998.2023.10306574.

  32. Gheisarnejad, M.; Khooban, M.H.: An intelligent non-integer PID controller-based deep reinforcement learning: implementation and experimental results. IEEE Trans. Industr. Electron. 68(4), 3609–3618 (2020)

    Article  Google Scholar 

  33. Gao, P.; Zhang, G.; Ouyang, H.; Mei, L.: An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer. IEEE Access 8, 53498–53510 (2020)

    Article  Google Scholar 

  34. Lee, C.L.; Peng, C.C.: Analytic time domain specifications PID controller design for a class of 2nd order linear systems: a genetic algorithm method. IEEE Access 9, 99266–99275 (2021)

    Article  Google Scholar 

  35. Pan, Z.; Dong, F.; Zhao, J.; Wang, L.; Wang, H.; Feng, Y.: Combined resonant controller and two-degree-of-freedom PID controller for PMSLM current harmonics suppression. IEEE Trans. Industr. Electron. 65(9), 7558–7568 (2018)

    Article  Google Scholar 

  36. Chen, Q.; Tan, Y.; Li, J.; Mareels, I.: Decentralized PID control design for magnetic levitation systems using extremum seeking. IEEE Access 6, 3059–3067 (2017)

    Article  Google Scholar 

  37. Qureshi, M.S.; Das, S.; Swarnkar, P.; Gupta, S.: Design and implementation of sliding mode control for uncertain systems. Mater. Today Proc. 5(2), 4299–4308 (2018)

    Article  Google Scholar 

  38. Gambhire, S.J.; Kishore, D.R.; Londhe, P.S.; Pawar, S.N.: Review of sliding mode based control techniques for control system applications. Int. J. Dyn. Control 9(1), 363–378 (2021)

    Article  MathSciNet  Google Scholar 

  39. Bartoszewicz, A.; Żuk, J.: Sliding mode control—Basic concepts and current trends. In 2010 IEEE International Symposium on Industrial Electronics (pp. 3772–3777). IEEE 2010,

  40. Aydin, M.N. ; Çoban, R.: Sliding mode control design and experimental application to an electromechanical plant. In 2016 57th international scientific conference on power and electrical engineering of Riga Technical University (RTUCON) (pp. 1–4). IEEE (2016)

  41. Yue, C.; Yu, H.; Meng, X.: Sliding mode control of underactuated nonlinear systems based on piecewise double power reaching law. Math. Prob. Eng. (2022)

  42. Borase, R.P.; Maghade, D.K.; Sondkar, S.Y.; Pawar, S.N.: A review of PID control, tuning methods and applications. Int. J. Dyn. Control 9(2), 818–827 (2021)

    Article  MathSciNet  Google Scholar 

  43. Lawrence, N.P.; Forbes, M.G.; Loewen, P.D.; McClement, D.G.; Backström, J.U.; Gopaluni, R.B.: Deep reinforcement learning with shallow controllers: An experimental application to PID tuning. Control. Eng. Pract. 121, 105046 (2022)

    Article  Google Scholar 

  44. Biyanto, T.R.; Sehamat, N.; Sordi, N.A. and Zabiri, H.: Optimization of PID controller tuning parameters for multivariable system using Duelist algorithm. In IOP Conference Series: Materials Science and Engineering (Vol. 458, No. 1, p. 012053). IOP Publishing. 2018

  45. Zeng, D.; Zheng, Y.; Luo, W.; Hu, Y.; Cui, Q.; Li, Q.; Peng, C.: Research on improved auto-tuning of a pid controller based on phase angle margin. Energies 12(9), 1704 (2019)

    Article  Google Scholar 

  46. Nayak, A.; Singh, M.: Study of tuning of PID controller by using particle swarm optimization. Int. J. Adv. Engg. Res. Studies 346, 350 (2015)

    Google Scholar 

  47. Thirumeni, M.; Thangavelusamy, D.: Design and analysis of hybrid PSO–GSA tuned PI and SMC controller for DC–DC Cuk converter. IET Circuits Devices Syst. 13(3), 374–384 (2019)

    Article  Google Scholar 

  48. Veerasamy, V.; Abdul Wahab, N.I.; Ramachandran, R.; Vinayagam, A.; Othman, M.L.; Hizam, H.; Satheeshkumar, J.: Automatic load frequency control of a multi-area dynamic interconnected power system using a hybrid PSO-GSA-tuned PID controller. Sustainability 11, 6908 (2019). https://doi.org/10.3390/su11246908

    Article  Google Scholar 

  49. Messenger, R.A.; Abtahi, A.: Photovoltaic systems engineering, 4th edn. CRC Press, Boca Raton, FL (2020)

    Google Scholar 

  50. Harrison, A.; Alombah, N.H.; de Dieu Nguimfack Ndongmo J: A new hybrid MPPT based on incremental conductance-integral backstepping controller applied to a pv system under fast-changing operating conditions. Int. J. Photoenergy 9931481, 17 (2023)

    Google Scholar 

  51. Shen, J.; Zhang, J.; Huang, X.; Qiu, L.; Fang, Y.: Active thermal management method for output-parallel DAB DC–DC converters under parameter mismatches and asymmetrical modulation. IEEE Trans. Power Electron. 38(7), 8237–8248 (2023). https://doi.org/10.1109/TPEL.2023.3266287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugappan Murugappan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamani, M.P.E., Murugappan, M., Prakash, N.B. et al. Photovoltaic-Based Dual Output DC–DC Converter Using Gravitational Search Algorithm-Tuned PI and Sliding Mode Controllers. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08962-2

Keywords

Navigation